Search results for "aw"

showing 10 items of 28285 documents

Luminescence properties of chlorine molecules in glassy SiO 2 and optical fibre waveguides

2017

The support from Latvian Research Program IMIS 2, project “Photonics and materials for photonics” is acknowledged. K.K. was partially supported by the Collaborative Research Project of Materials and Structures Laboratory, Tokyo Institute of Technology. The publication costs of this article were covered by the Estonian Academy of Sciences and the University of Tartu.

010302 applied physicsMaterials scienceOptical fiberbusiness.industryGeneral Engineeringphotonicschemistry.chemical_elementoptical fibresamorphous SiO202 engineering and technology021001 nanoscience & nanotechnology01 natural scienceslaw.inventionCl2 impuritieschemistrylaw0103 physical sciencesChlorineluminescence:NATURAL SCIENCES:Physics [Research Subject Categories]MoleculeOptoelectronics0210 nano-technologyLuminescencebusinessProceedings of the Estonian Academy of Sciences
researchProduct

Numerical modelling for the diameter increase of silicon crystals grown with the pedestal method

2021

Abstract The pedestal method is one of crucible-free crystal growth methods, that has been less researched than the well-known floating zone (FZ) method. However, the pedestal method may be a cost-effective alternative to FZ, if large diameter feed rods are available. The investigated system contains two electromagnetic inductors: high-frequency inductor for pedestal top surface melting and middle-frequency inductor for pedestal side heating. The present work describes recent advances in numerical modelling of heat transfer and phase boundaries in axially symmetrical approximation, neglecting the melt flow. The shape of high-frequency inductor was optimized with the algorithm of gradient de…

010302 applied physicsMaterials sciencePhase (waves)Crystal growth02 engineering and technologyMechanics021001 nanoscience & nanotechnologyCondensed Matter PhysicsInductor01 natural sciencesRodlaw.inventionInorganic ChemistryCrystalPedestallaw0103 physical sciencesHeat transferMaterials ChemistryCrystallization0210 nano-technologyJournal of Crystal Growth
researchProduct

Low-temperature luminescence of ScF3 single crystals under excitation by VUV synchrotron radiation

2020

The work was supported by the Latvian Science Council grant LZP-2018/2-0358. The research leading to this result has also been supported by the project CALIPSO plus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. The author is grateful to K. Chernenko (MAX IV Laboratory, Lund University) for his assistance during beamtime experiments and to A. I. Popov for the fruitful discussions. V.P. also acknowledges Valsts pētījumu programma “Augstas enerģijas fizika un paātrinātāju tehnoloģijas” (Projekta Nr. VPP-IZM-CERN-2020/1-0002). REFERENCES

010302 applied physicsMaterials sciencePhotoluminescencePhysics and Astronomy (miscellaneous)synchrotron radiationAstrophysics::High Energy Astrophysical PhenomenaExcitonGeneral Physics and AstronomySynchrotron radiationUndulator7. Clean energy01 natural sciencesSynchrotronlaw.inventionlawAbsorption band0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]VUV luminescence spectroscopyAtomic physics010306 general physicsLuminescenceExcitationScF3
researchProduct

Optimization of a laser ion source for $^{163}$Ho isotope separation

2019

To measure the mass of the electron neutrino, the “Electron Capture in Holmium-163” (ECHo) collaboration aims at calorimetrically measuring the spectrum following electron capture in 163Ho. The success of the ECHo experiment depends critically on the radiochemical purity of the 163Ho sample, which is ion-implanted into the calorimeters. For this, a 30 kV high transmission magnetic mass separator equipped with a resonance ionization laser ion source is used. To meet the ECHo requirements, the ion source unit was optimized with respect to its thermal characteristics and material composition by means of the finite element method thermal-electric calculations and chemical equilibrium simulation…

010302 applied physicsMaterials sciencePhysics - Instrumentation and DetectorsAtomic Physics (physics.atom-ph)Electron captureFOS: Physical sciencesThermal ionizationInstrumentation and Detectors (physics.ins-det)Laser01 natural sciencesIon source010305 fluids & plasmasIsotope separationlaw.inventionPhysics - Atomic PhysicslawIonization0103 physical sciencesThermalAtomic physicsChemical equilibriumInstrumentation
researchProduct

Low-temperature luminescence of catangasite single crystals under excitation by vacuum ultraviolet synchrotron radiation

2020

The luminescent properties of Ca3TaGa3Si2O14 (CTGS, catangasite) single crystals have been studied by means of the vacuum ultraviolet excitation spectroscopy utilizing synchrotron radiation from 1.5 GeV storage ring of MAX IV synchrotron facility. Two emission bands at 320 nm (3.87 eV) and 445 nm (2.78 eV) have been detected. Examining excitation spectra in vacuum ultraviolet spectral range, the 320 nm emission band was explained as the emission band of self-trapped exciton in CTGS single crystal. Its atomic structure is discussed. It is also proposed that the 445 nm (2.78 eV) emission in the CTGS is due to the F centers, which have shown a well-resolved excitation (absorption) band at 5.1 …

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Astrophysics::High Energy Astrophysical PhenomenaExcitonGeneral Physics and AstronomySynchrotron radiation01 natural sciencesSynchrotronlaw.inventionlaw0103 physical sciencesAtomic physics010306 general physicsAbsorption (electromagnetic radiation)LuminescenceSingle crystalStorage ringExcitation
researchProduct

Rock-salt CdZnO as a transparent conductive oxide

2018

Transparent conducting oxides (TCOs) are widely used in applications from solar cells to light emitting diodes. Here, we show that the metal organic chemical vapor deposition (MOCVD)-grown, rock-salt CdZnO ternary, has excellent potential as a TCO. To assess this compound, we use a combination of infrared reflectance and ultraviolet-visible absorption spectroscopies, together with Hall effect, to determine its optical and electrical transport characteristics. It is found that the incorporation of Zn produces an increment of the electron concentration and mobility, yielding lower resistivities than those of CdO, with a minimum of 1.96 × 10 − 4 Ω · cm for a Zn content of 10%. Moreover, due to…

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Band gapAnalytical chemistry02 engineering and technologyChemical vapor deposition021001 nanoscience & nanotechnology01 natural scienceslaw.inventionlaw0103 physical sciencesMetalorganic vapour phase epitaxy0210 nano-technologyTernary operationAbsorption (electromagnetic radiation)Deposition (law)Transparent conducting filmLight-emitting diodeApplied Physics Letters
researchProduct

Effect of Mn doping on the low-temperature synthesis of tricalcium phosphate (TCP) polymorphs

2019

Abstract Effect of Mn doping on the low-temperature synthesis of tricalcium phosphate (TCP) polymorphs was demonstrated in α- and β-TCP polymorphs prepared by wet precipitation method under identical conditions and annealed at 700 °C. Calcium phosphates with Mn doping level in the range from 1 to 5 mol% were studied and the formation of desired polymorph was controlled by varying Mn content in as-prepared precipitates. It was found that increasing Mn content resulted in the formation of β-TCP, while α-TCP was obtained with low Mn doping level, whereas a mixture of two polymorphs was obtained for intermediate Mn concentrations. Moreover, doping with Mn ions allowed the synthesis of β-TCP at …

010302 applied physicsMaterials sciencePrecipitation (chemistry)Scanning electron microscopeDopingInfrared spectroscopy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesIonlaw.inventionlaw0103 physical sciencesMaterials ChemistryCeramics and CompositesFourier transform infrared spectroscopyInductively coupled plasma0210 nano-technologyElectron paramagnetic resonanceNuclear chemistryJournal of the European Ceramic Society
researchProduct

Corrosion of Welded Metal Structures of Mining Equipment

2018

Mining equipment made of welded metal structures is strongly affected by the corrosion phenomenon due to the working conditions. Initial research has shown that the corrosion phenomenon is most pronounced in the area of cross-welded joints and welded T-shaped joints. In the researches, there was made a chemical analysis of the welded construction material used respectively of the new material and it was observed a reduction in carbon concentration in the material used, but also a substantial increase in the sulfur concentration compared to the new material. The pronounced corrosion of the metallic structure is influenced by the chemical composition change because the sulfur is a grafitizin…

010302 applied physicsMaterials scienceProcess equipmentMaterials Science (miscellaneous)Process Chemistry and TechnologyMetallurgyGeneral Engineering02 engineering and technologyGeneral ChemistryGeneral MedicineWelding021001 nanoscience & nanotechnology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyCorrosionlaw.inventionMetalPetrochemistrylawvisual_art0103 physical sciencesMaterials Chemistryvisual_art.visual_art_mediumGeneral Pharmacology Toxicology and Pharmaceutics0210 nano-technologyRevista de Chimie
researchProduct

Fabrication and characterization of low cost Cu 2 O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials

2016

Abstract The low cost electrodeposition method was used to grow Cu2O thin films and experimentally determine the optimal absorber layer thickness. Raman scattering studies indicate the presence of solely crystalline Cu2O and SEM images show that the thin films consist of grains with a pyramidal shape. The influence of the thickness of the light absorbing Cu2O layer on the basic characteristic of the heterojunction and their properties have been investigated using reflectivity, current–voltage (J–V), capacitance–voltage (C–V) and the external quantum efficiency (EQE) measurements. The depletion layer, the charge collection length of the minority carrier, and reflectivity are the main factors…

010302 applied physicsMaterials scienceRenewable Energy Sustainability and the Environmentbusiness.industryOpen-circuit voltageHeterojunction02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionOpticsDepletion regionlawPhotovoltaics0103 physical sciencesSolar cellOptoelectronicsQuantum efficiencyThin film0210 nano-technologybusinessShort circuitSolar Energy Materials and Solar Cells
researchProduct

Quartz resonators for penning traps toward mass spectrometry on the heaviest ions

2020

We report on cyclotron frequency measurements on trapped 206,207Pb+ ions by means of the non-destructive Fourier-transform ion-cyclotron-resonance technique at room temperature. In a proof-of-principle experiment using a quartz crystal instead of a coil as a resonator, we have alternately carried out cyclotron frequency measurements for 206Pb+ and 207Pb+ with the sideband coupling method to obtain 21 cyclotron-frequency ratios with a statistical uncertainty of 6 × 10−7. The mean frequency ratio R¯ deviates by about 2σ from the value deduced from the masses reported in the latest Atomic Mass Evaluation. We anticipate that this shift is due to the ion–ion interaction between the simultaneousl…

010302 applied physicsMaterials scienceSidebandCyclotronMass spectrometry01 natural sciences7. Clean energyAtomic mass010305 fluids & plasmaslaw.inventionIonCrystalResonatorPhysics::Plasma Physicslaw0103 physical sciencesAtomic physicsddc:620InstrumentationQuartz
researchProduct