Search results for "azelaic-acid"

showing 1 items of 1 documents

Free Radicals Mediate Systemic Acquired Resistance

2014

Summary: Systemic acquired resistance (SAR) is a form of resistance that protects plants against a broad spectrum of secondary infections. However, exploiting SAR for the protection of agriculturally important plants warrants a thorough investigation of the mutual interrelationships among the various signals that mediate SAR. Here, we show that nitric oxide (NO) and reactive oxygen species (ROS) serve as inducers of SAR in a concentration-dependent manner. Thus, genetic mutations that either inhibit NO/ROS production or increase NO accumulation (e.g., a mutation in S-nitrosoglutathione reductase [GSNOR]) abrogate SAR. Different ROS function additively to generate the fatty-acid-derived azel…

0106 biological sciences[SDV]Life Sciences [q-bio]ArabidopsisPseudomonas syringaeReductasemedicine.disease_cause01 natural scienceschemistry.chemical_compoundcuticle formationInducerDicarboxylic Acidsskin and connective tissue diseaseslcsh:QH301-705.5chemistry.chemical_classification0303 health sciencesMutationsalicyclic-acidCell biologydefenseGlutathione ReductaseBiochemistryGlycerophosphates[SDE]Environmental Sciencesplant immunitySystemic acquired resistances-nitrosoglutathioneSecondary infectionnitric-oxidearabidopsis-thalianaBiologyNitric OxideGeneral Biochemistry Genetics and Molecular BiologyNitric oxide03 medical and health sciencesmedicine[SDV.BV]Life Sciences [q-bio]/Vegetal Biology030304 developmental biologyReactive oxygen speciesArabidopsis Proteinsfungicell-deathbody regionschemistrylcsh:Biology (General)azelaic-acidresponsesNitric Oxide SynthaseReactive Oxygen SpeciesFunction (biology)010606 plant biology & botanynitric-oxide;plant immunity;arabidopsis-thaliana;s-nitrosoglutathione;cuticle formation;salicyclic-acid;azelaic-acid;cell-death;responses;defenseCell Reports
researchProduct