Search results for "background"

showing 10 items of 556 documents

A brief review on primordial black holes as dark matter

2021

Primordial black holes (PBHs) represent a natural candidate for one of the components of the dark matter (DM) in the Universe. In this review, we shall discuss the basics of their formation, abundance and signatures. Some of their characteristic signals are examined, such as the emission of particles due to Hawking evaporation and the accretion of the surrounding matter, effects which could leave an impact in the evolution of the Universe and the formation of structures. The most relevant probes capable of constraining their masses and population are discussed.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)AstronomyAstrophysics::High Energy Astrophysical PhenomenaCosmic microwave backgroundPopulationDark matterGeophysics. Cosmic physicsFOS: Physical sciencesPrimordial black holeQB1-991AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGravitational microlensing01 natural sciencesCosmologydark matteraccretion0103 physical sciences010306 general physicseducationAstrophysics::Galaxy AstrophysicsPhysicseducation.field_of_study010308 nuclear & particles physicsGravitational waveQC801-809primordial black holesAstronomy and AstrophysicsAccretion (astrophysics)gravitational waves21 cm cosmologycosmologyAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cold dark matter plus not-so-clumpy dark relics

2017

Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matte…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Cold dark matterMilky WayCosmic microwave backgroundDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencessymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPlanck010303 astronomy & astrophysicsCondensed Matter::Quantum GasesPhysics010308 nuclear & particles physicsMatter power spectrumAstronomy and AstrophysicsBaryonHigh Energy Physics - Phenomenology13. Climate actionDark radiationsymbolsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Variations in fundamental constants at the cosmic dawn

2020

The observation of space-time variations in fundamental constants would provide strong evidence for the existence of new light degrees of freedom in the theory of Nature. Robustly constraining such scenarios requires exploiting observations that span different scales and probe the state of the Universe at different epochs. In the context of cosmology, both the cosmic microwave background and the Lyman-α forest have proven to be powerful tools capable of constraining variations in electromagnetism, however at the moment there do not exist cosmological probes capable of bridging the gap between recombination and reionization. In the near future, radio telescopes will attempt to measure the 21…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic microwave backgroundFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesCosmologyRadio telescopeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesReionizationcosmology of theories beyond the SMAstrophysiquePhysicsCOSMIC cancer database010308 nuclear & particles physicsSpectral densityhep-phAstronomy and AstrophysicsAstronomieHigh Energy Physics - Phenomenologyparticle physics-cosmology connectionastro-ph.CODark AgesreionizationAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Euclid preparation XV. Forecasting cosmological constraints for the Euclid and CMB joint analysis

2022

The combination and cross-correlation of the upcoming $Euclid$ data with cosmic microwave background (CMB) measurements is a source of great expectation since it will provide the largest lever arm of epochs, ranging from recombination to structure formation across the entire past light cone. In this work, we present forecasts for the joint analysis of $Euclid$ and CMB data on the cosmological parameters of the standard cosmological model and some of its extensions. This work expands and complements the recently published forecasts based on $Euclid$-specific probes, namely galaxy clustering, weak lensing, and their cross-correlation. With some assumptions on the specifications of current and…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic microwave backgroundstatistical [methods]FOS: Physical sciencesAstrophysicscosmic background radiationAstrophysics::Cosmology and Extragalactic AstrophysicsJoint analysiskosmologia01 natural sciencesmethodsNOpimeä aine[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]mikroaallotSettore FIS/05 - Astronomia e Astrofisicasurveys0103 physical sciencestszsurvey010303 astronomy & astrophysicsPhysicsmethods: statistical010308 nuclear & particles physicsComputer Science::Information RetrievalmaailmankaikkeusAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysicscross-correlation115 Astronomy Space scienceCosmic background radiation; Large-scale structure of Universe; Methods: statistical; Surveyskosminen taustasäteilySpace and Planetary Sciencemethodlarge-scale structure of Universepimeä energia[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]statisticalAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

CMB spectral distortions in generic two-field models

2017

We investigate the CMB $\mu$ distortion in models where two uncorrelated sources contribute to primordial perturbations. We parameterise each source by an amplitude, tilt, running and running of the running. We perform a detailed analysis of the distribution signal as function of the model parameters, highlighting the differences compared to single-source models. As a specific example, we also investigate the mixed inflaton-curvaton scenario. We find that the $\mu$ distortion could efficiently break degeneracies of curvaton parameters especially when combined with future sensitivity of probing the tensor-to-scalar ratio $r$. For example, assuming bounds $\mu < 0.5 \times 10^{-8}$ and $r<0.0…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Field (physics)ART. NO. 023505Cosmic microwave backgroundFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics114 Physical sciences01 natural sciencesCosmologyHigh Energy Physics - Phenomenology (hep-ph)EARLY UNIVERSEDistortion0103 physical sciencesphysics of the early universeENERGY-RELEASEStatistical physicsSensitivity (control systems)inflation010303 astronomy & astrophysicsPhysicsInflation (cosmology)010308 nuclear & particles physicscosmological parameters from CMBRCURVATURE PERTURBATIONCONSTRAINTSAstronomy and AstrophysicsFunction (mathematics)115 Astronomy Space scienceMIXED INFLATONHigh Energy Physics - PhenomenologyDENSITY PERTURBATIONSAmplitudeCOSMOLOGYRADIATIONAstrophysics - Cosmology and Nongalactic AstrophysicsGENERATIONJournal of Cosmology and Astroparticle Physics
researchProduct

Cosmological forecasts on thermal axions, relic neutrinos and light elements

2022

One of the targets of future Cosmic Microwave Background and Baryon Acoustic Oscillation measurements is to improve the current accuracy in the neutrino sector and reach a much better sensitivity on extra dark radiation in the Early Universe. In this paper we study how these improvements can be translated into constraining power for well motivated extensions of the Standard Model of elementary particles that involve axions thermalized before the quantum chromodynamics (QCD) phase transition by scatterings with gluons. Assuming a fiducial $\Lambda$CDM cosmological model, we simulate future data for Stage-IV CMB-like and Dark Energy Spectroscopic Instrument (DESI)-like surveys and analyze a m…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics::PhenomenologyFOS: Physical sciencesAstronomy and Astrophysicscosmic background radiationAstrophysics::Cosmology and Extragalactic Astrophysicsearly Universedark matterHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Space and Planetary Sciencecosmic background radiation cosmological parameters dark matter early Universe cosmology: observationscosmology: observationsHigh Energy Physics::Experimentcosmological parametersAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Impact of cosmic inhomogeneities on SNe observations

2009

We study the impact of cosmic inhomogeneities on the interpretation of SNe observations. We build an inhomogeneous universe model that can confront supernova data and yet is reasonably well compatible with the Copernican Principle. Our model combines a relatively small local void, that gives apparent acceleration at low redshifts, with a meatball model that gives sizeable lensing (dimming) at high redshifts. Together these two elements, which focus on different effects of voids on the data, allow the model to mimic the concordance model.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectgr-qcCosmic background radiationFOS: Physical sciencesAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences114 Physical sciencesGeneral Relativity and Quantum CosmologyCosmologysymbols.namesakeObservational cosmology0103 physical sciences010306 general physicsmedia_commonPhysicsCOSMIC cancer database010308 nuclear & particles physicsCopernican principleRedshiftUniverseLocal Voidsymbolsastro-ph.COAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

In the realm of the Hubble tension—a review of solutions

2021

The $\Lambda$CDM model provides a good fit to a large span of cosmological data but harbors areas of phenomenology. With the improvement of the number and the accuracy of observations, discrepancies among key cosmological parameters of the model have emerged. The most statistically significant tension is the $4-6\sigma$ disagreement between predictions of the Hubble constant $H_0$ by early time probes with $\Lambda$CDM model, and a number of late time, model-independent determinations of $H_0$ from local measurements of distances and redshifts. The high precision and consistency of the data at both ends present strong challenges to the possible solution space and demand a hypothesis with en…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)satellite: PlanckPhysics and Astronomy (miscellaneous)gravitation: modelPhysics beyond the Standard ModelCosmic microwave backgroundFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsbaryon: oscillation: acoustic01 natural sciencesGeneral Relativity and Quantum CosmologyCosmologysymbols.namesakeTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)cosmological model: parameter space0103 physical sciencesstructurePlanckinflationcosmic background radiation: power spectrum010306 general physicsdark energyneutrino: interactionPhysicssupernova: Type IHubble constant010308 nuclear & particles physicsnew physicsmagnetic field: primordialtensionredshiftAstrophysics - Astrophysics of GalaxiesRedshiftrecombinationHigh Energy Physics - Phenomenology13. Climate actionAstrophysics of Galaxies (astro-ph.GA)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]relativisticsymbolsDark energy[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Phenomenology (particle physics)statisticalAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's law
researchProduct

Expectancy in Sami Yoiks revisited: The role of data-driven and schema-driven knowledge in the formation of melodic expectations

2009

This study extends a previous study concerning melodic expectations in North Sami yoiks (Krumhansl et al., 2000) in which a comparison between expert and non-expert listeners demonstrated the existence of a core set of principles governing melodic expectancies. The previous findings are reconsidered using non-Western listeners (traditional healers from South Africa) in a modeling investigation. Comparison of different models made it possible to separate the role of data-driven and schema-driven models in melodic expectancies and to reveal any possible Western bias in previous studies. The results of the experiment, in which African listeners rated the fitness of probe-tones as continuation…

Cultural backgroundCore setMelodyExpectancy theoryMusic psychologySchema (psychology)Experimental and Cognitive PsychologySchematic modelPsychologySocial psychologyMusicCognitive psychologyData-drivenMusicae Scientiae
researchProduct

Migrant Friendships in a Super-Diverse City. Russian-Speakers and their Social Relationships in London in the 21st Century

2017

The book is built on excellent premises which include a super-diverse city, a highly heterogeneous migrant population, as well as a post-Soviet cultural background which embeds two opposed tendenci...

Cultural backgroundEconomics and EconometricsHistorySociology and Political ScienceGeography Planning and DevelopmentSocial relationshipGender studiesSociologyMigrant populationEurope-Asia Studies
researchProduct