Search results for "backscatter"
showing 10 items of 123 documents
Sources of discrepancy between aerosol optical depth obtained from AERONET and in-situ aircraft profiles
2012
Abstract. Aerosol optical properties were measured by NOAA's Airborne Aerosol Observatory over Bondville, Illinois, during more than two years using a light aircraft. Measured properties included total light scattering, backscattering, and absorption, while calculated parameters included aerosol optical depth (AOD), Ångström exponent, single-scattering albedo, hemispheric backscatter fraction, asymmetry parameter, and submicrometer mode fraction of scattering. The in-situ aircraft measurements are compared here with AERONET measurements and retrievals of the aerosol optical properties at the same location, although it is difficult to verify the AERONET retrieval algorithm at a site that is …
Potential of airborne lidar measurements for cirrus cloud studies
2014
Abstract. Aerosol and water vapour measurements were performed with the lidar system WALES of Deutsches Zentrum für Luft- und Raumfahrt (DLR) in October and November 2010 during the first mission with the new German research aircraft G55-HALO. Curtains composed of lidar profiles beneath the aircraft show the vertical and horizontal distribution and variability of water vapour mixing ratio and backscatter ratio above Germany. Two missions on 3 and 4 November 2010 were selected to derive the water vapour mixing ratio inside cirrus clouds from the lidar instrument. A good agreement was found with in situ observations performed on a second research aircraft flying below HALO. ECMWF analysis tem…
Extreme, wintertime Saharan dust intrusion in the Iberian Peninsula: Lidar monitoring and evaluation of dust forecast models during the February 2017…
2019
The research leading to these results has received funding from the H2020 program from the European Union (grant agreement no. 654109, 778349) and also from the Spanish Ministry of Industry, Economy and Competitiviness (MINECO, ref. CGL2013-45410-R, CGL2016-81092-R, CGL2017-85344-R, TEC2015-63832-P), the Spanish Ministry of Science, Innovation and Universities (ref. CGL2017-90884-REDT); the CommSensLab "Maria de Maeztu" Unity of Excellence (ref. MDM-2016-0600) financed by the Spanish Agencia Estatal de Investigación. Co-funding was also provided by the European Union through the European Regional Development Fund (ref. POCI-01-0145-FEDER-007690, ALT20-03-0145-FEDER-000004, ALT20-03-0145-FED…
Influence of the grain orientation spread on the pitting corrosion resistance of duplex stainless steels using electron backscatter diffraction and c…
2013
Abstract The corrosion behavior of UNS S32202 duplex stainless steel was studied by combining electron backscatter diffraction (EBSD) measurements and critical pitting temperature tests at the microscale. The grain orientation spread (GOS) value was determined in grains of both phases from EBSD data. It was shown that austenitic sites containing extremely small ferrite grains having a GOS value greater than 1.3° were precursor sites for pitting in 4 M NaCl. The critical pitting temperature range was 45–90 °C. All the other sites of both phases remained passive up to 100 °C.
Passive properties of lean duplex stainless steels after long-term ageing in air studied using EBSD, AES, XPS and local electrochemical impedance spe…
2013
Abstract Passivity of duplex stainless steel was studied after long-term ageing in air using local electrochemical impedance spectroscopy, AES, XPS and EBSD. After mechanical polishing, the passive film was homogeneous and had a capacitive behaviour described by the CPE. After long-term ageing, a small thickening was detected and O2−/OH− was significantly higher in the austenite than in the ferrite. Austenite behaved as a blocking electrode whereas two capacitive loops were observed in the ferrite (low value of O2−/OH). The loop at high frequencies was related with the oxygen reduction and the loop at low frequencies was connected with the passive film.
Estimation of Vegetation Structure Parameters From SMAP Radar Intensity Observations
2021
In this article, we present a multipolarimetric estimation approach for two model-based vegetation structure parameters (shape A and orientation distribution ψ of the main canopy elements). The approach is based on a reduced observation set of three incoherent (no phase information) polarimetric backscatter intensities (|S HH | 2 , |S HV | 2 , and |S VV | 2 ) combined with a two-parameter (A P and ψ) discrete scatterer model of vegetation. The objective is to understand whether this confined set of observations contains enough information to estimate the two vegetation structure parameters from the L-band radar signals. In order to disentangle soil and vegetation scattering influences on th…
Passive RFID Strain-Sensor Based on Meander-Line Antennas
2011
The processing of backscattered signals coming from RFID tags is potentially useful to detect the physical state of the tagged object. It is here shown how to design a completely passive UHF RFID sensor for strain monitoring starting from a flexible meander-line dipole whose shape factor and feed section are engineered to achieve the desired sensing resolution and dynamic range. This class of devices is low-cost, promises sub-millimeter resolution and may found interesting applications in the Structural Health Monitoring of damaged structures and vehicles as well as during extreme and adverse events.
Low Latency Ambient Backscatter Communications with Deep Q-Learning for Beyond 5G Applications
2020
Low latency is a critical requirement of beyond 5G services. Previously, the aspect of latency has been extensively analyzed in conventional and modern wireless networks. With the rapidly growing research interest in wireless-powered ambient backscatter communications, it has become ever more important to meet the delay constraints, while maximizing the achievable data rate. Therefore, to address the issue of latency in backscatter networks, this paper provides a deep Q-learning based framework for delay constrained ambient backscatter networks. To do so, a Q-learning model for ambient backscatter scenario has been developed. In addition, an algorithm has been proposed that employ deep neur…
Unusual internal structure of cm-sized coldwater calcite: Weichselian spars in former pools of the Zinnbergschacht Cave (Franconian Alb/SE Germany)
2018
The investigation of the internal structure of calcite crystals is a new focus in speleothem science, especially in the range of crystallization temperatures close to 0°C. Recently found calcite spars from Zinnbergschacht Cave of the Franconian Alb (SE Germany) are ideal for multi-method investigation. The elongated calcites (up to 6 cm in length) with three to six lateral faces and basal triangular faces at the ends are observed in collapse-zones in the cave. 230Th/U-ages of 38.9 ka suggest formation during the periglacial Weichselian, between the Scandinavian and Alpine Glaciations. The δ18O and δ13C values of the calcite spars vary from -11.18 to -16.11‰ V-PDB and from -4.78 to -6.13‰ V-…
Atomic structure solution of the complex quasicrystal approximant Al77Rh15Ru8 from electron diffraction data
2014
The crystal structure of the novel Al77Rh15Ru8phase (which is an approximant of decagonal quasicrystals) was determined using modern direct methods (MDM) applied to automated electron diffraction tomography (ADT) data. The Al77Rh15Ru8E-phase is orthorhombic [Pbma,a= 23.40 (5),b= 16.20 (4) andc= 20.00 (5) Å] and has one of the most complicated intermetallic structures solved solely by electron diffraction methods. Its structural model consists of 78 unique atomic positions in the unit cell (19 Rh/Ru and 59 Al). Precession electron diffraction (PED) patterns and high-resolution electron microscopy (HRTEM) images were used for the validation of the proposed atomic model. The structure of the E…