Search results for "banach"

showing 10 items of 326 documents

Examples of improjective operators

2000

It has been an open question for some time whether improjective operators are always inessential. Here we give some examples that answer in the negative this question as well as some other related ones, posed in [2, 3, 11, 12]. The description of the examples uses a indecomposable space, constructed by Gowers and Maurey [5], and a characterization of the indecomposable Banach spaces in terms of improjective operators.

AlgebraPure mathematicsApproximation propertyGeneral MathematicsBanach spaceCharacterization (mathematics)Space (mathematics)Indecomposable moduleMathematicsMathematische Zeitschrift
researchProduct

Examples of Indexed PIP-Spaces

2009

This chapter is devoted to a detailed analysis of various concrete examples of pip-spaces. We will explore sequence spaces, spaces of measurable functions, and spaces of analytic functions. Some cases have already been presented in Chapters 1 and 2. We will of course not repeat these discussions, except very briefly. In addition, various functional spaces are of great interest in signal processing (amalgam spaces, modulation spaces, Besov spaces, coorbit spaces). These will be studied systematically in a separate chapter (Chapter 8).

AlgebraSequencesymbols.namesakeModulation spaceMeasurable functionComputer scienceBergman spaceBanach spacesymbolsHilbert spaceHardy spaceSequence space
researchProduct

Lipschitz-type conditions on homogeneous Banach spaces of analytic functions

2017

Abstract In this paper we deal with Banach spaces of analytic functions X defined on the unit disk satisfying that R t f ∈ X for any t > 0 and f ∈ X , where R t f ( z ) = f ( e i t z ) . We study the space of functions in X such that ‖ P r ( D f ) ‖ X = O ( ω ( 1 − r ) 1 − r ) , r → 1 − where D f ( z ) = ∑ n = 0 ∞ ( n + 1 ) a n z n and ω is a continuous and non-decreasing weight satisfying certain mild assumptions. The space under consideration is shown to coincide with the subspace of functions in X satisfying any of the following conditions: (a) ‖ R t f − f ‖ X = O ( ω ( t ) ) , (b) ‖ P r f − f ‖ X = O ( ω ( 1 − r ) ) , (c) ‖ Δ n f ‖ X = O ( ω ( 2 − n ) ) , or (d) ‖ f − s n f ‖ X = O ( ω …

Applied Mathematics010102 general mathematicsBanach spaceType (model theory)Space (mathematics)Lipschitz continuity01 natural sciencesUnit disk010101 applied mathematicsCombinatoricsHomogeneous0101 mathematicsAnalysisAnalytic functionMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Norm or numerical radius attaining polynomials on C(K)

2004

Abstract Let C(K, C ) be the Banach space of all complex-valued continuous functions on a compact Hausdorff space K. We study when the following statement holds: every norm attaining n-homogeneous complex polynomial on C(K, C ) attains its norm at extreme points. We prove that this property is true whenever K is a compact Hausdorff space of dimension less than or equal to one. In the case of a compact metric space a characterization is obtained. As a consequence we show that, for a scattered compact Hausdorff space K, every continuous n-homogeneous complex polynomial on C(K, C ) can be approximated by norm attaining ones at extreme points and also that the set of all extreme points of the u…

Applied MathematicsMathematical analysisBanach spaceHausdorff spaceContinuous functions on a compact Hausdorff spaceCombinatoricsMetric spacesymbols.namesakeUniform normNorm (mathematics)Hausdorff dimensionsymbolsStone–Weierstrass theoremAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Stability of impulsive differential systems

2013

The asymptotic phase property and reduction principle for stability of a trivial solution is generalized to the case of the noninvertible impulsive differential equations in Banach spaces whose linear parts split into two parts and satisfy the condition of separation.

Article SubjectDifferential equationlcsh:MathematicsApplied MathematicsMathematical analysisPhase (waves)Banach spacelcsh:QA1-939Differential systemsStability (probability)Trivial solution:MATHEMATICS::Applied mathematics [Research Subject Categories]Reduction (mathematics)AnalysisMathematics
researchProduct

A Dirichlet problem for the Laplace operator in a domain with a small hole close to the boundary

2016

We study the Dirichlet problem in a domain with a small hole close to the boundary. To do so, for each pair $\boldsymbol\varepsilon = (\varepsilon_1, \varepsilon_2 )$ of positive parameters, we consider a perforated domain $\Omega_{\boldsymbol\varepsilon}$ obtained by making a small hole of size $\varepsilon_1 \varepsilon_2 $ in an open regular subset $\Omega$ of $\mathbb{R}^n$ at distance $\varepsilon_1$ from the boundary $\partial\Omega$. As $\varepsilon_1 \to 0$, the perforation shrinks to a point and, at the same time, approaches the boundary. When $\boldsymbol\varepsilon \to (0,0)$, the size of the hole shrinks at a faster rate than its approach to the boundary. We denote by $u_{\bolds…

Asymptotic analysisGeneral MathematicsBoundary (topology)Asymptotic expansion01 natural sciences35J25; 31B10; 45A05; 35B25; 35C20Mathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mathematics (all)Mathematics - Numerical Analysis0101 mathematicsMathematicsDirichlet problemLaplace's equationDirichlet problemAnalytic continuationApplied Mathematics010102 general mathematicsMathematical analysisHigh Energy Physics::PhenomenologyReal analytic continuation in Banach spaceNumerical Analysis (math.NA)Physics::Classical Physics010101 applied mathematicsasymptotic analysisLaplace operatorPhysics::Space PhysicsAsymptotic expansion; Dirichlet problem; Laplace operator; Real analytic continuation in Banach space; Singularly perturbed perforated domain; Mathematics (all); Applied MathematicsAsymptotic expansionLaplace operator[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]Singularly perturbed perforated domainAnalytic functionAnalysis of PDEs (math.AP)Asymptotic expansion; Dirichlet problem; Laplace operator; Real analytic continuation in Banach space; Singularly perturbed perforated domain;
researchProduct

Representable and Continuous Functionals on Banach Quasi *-Algebras

2017

In the study of locally convex quasi *-algebras an important role is played by representable linear functionals; i.e., functionals which allow a GNS-construction. This paper is mainly devoted to the study of the continuity of representable functionals in Banach and Hilbert quasi *-algebras. Some other concepts related to representable functionals (full-representability, *-semisimplicity, etc) are revisited in these special cases. In particular, in the case of Hilbert quasi *-algebras, which are shown to be fully representable, the existence of a 1-1 correspondence between positive, bounded elements (defined in an appropriate way) and continuous representable functionals is proved.

Banach quasi *-algebraGeneral MathematicsHilbert quasi01 natural sciencesRepresentable functionalsAutomatic continuity of representable functional0103 physical sciencesFOS: MathematicsMathematics (all)Banach quasi0101 mathematicsOperator Algebras (math.OA)MathematicsDiscrete mathematics010102 general mathematicsMathematics - Operator AlgebrasRegular polygonAutomatic continuity of representable functionalsFunctional Analysis (math.FA)Mathematics - Functional AnalysisAutomatic continuity of representable functionals; Banach quasi; Hilbert quasi; Representable functionals; MathematicsRepresentable functionalBounded functionHilbert quasi *-algebra010307 mathematical physicsMathematicsMediterranean Journal of Mathematics
researchProduct

Solution of an initial-value problem for parabolic equations via monotone operator methods

2014

We study a general initial-value problem for parabolic equations in Banach spaces, by using a monotone operator method. We provide sufficient conditions for the existence of solution to such problem.

Banach spacemetric spacesparabolic equationlcsh:Mathematicsmetric spaceMathematicsofComputing_NUMERICALANALYSISparabolic equationstransitive relationslcsh:QA1-939Banach spacestransitive relations.Settore MAT/05 - Analisi Matematicamonotone operatormonotone operatorsElectronic Journal of Differential Equations
researchProduct

MR3098564 Reviewed Al-Thagafi, M. A.; Shahzad, Naseer Krasnosel'skii-type fixed-point results. J. Nonlinear Convex Anal. 14 (2013), no. 3, 483–491. (…

2014

The Krasnosel'skii fixed-point theorem is a powerful tool in dealing with various types of integro-differential equations. The initial motivation of this theorem is the fact that the inversion of a perturbed differential operator may yield the sum of a continuous compact mapping and a contraction mapping. Following and improving this idea, many fixed-point results were proved.\\ The authors present significant and interesting contributions in this direction. In particular, they give the following main theorem: \begin{theorem} Let $M$ be a nonempty bounded closed convex subset of a Banach space $E$, $S:M \to E$ and $T:M \to E$. Suppose that \begin{itemize} \item[(a)] $S$ is 1-set-contractive…

Banach spacenonlinear integral equation with delaySettore MAT/05 - Analisi MatematicaKrasnosel'skii fixed-point theorem
researchProduct

MR2986428 Lebedev, Leonid P.(CL-UNC); Vorovich, Iosif I.; Cloud, Michael J. Functional analysis in mechanics. Second edition. Springer Monographs in …

2014

Banach spaces Hilbert spaces bounded operators.Settore MAT/05 - Analisi Matematica
researchProduct