Search results for "banach"
showing 10 items of 326 documents
A decomposition theorem for compact-valued Henstock integral
2006
We prove that if X is a separable Banach space, then a measurable multifunction Γ : [0, 1] → ck(X) is Henstock integrable if and only if Γ can be represented as Γ = G + f, where G : [0, 1] → ck(X) is McShane integrable and f is a Henstock integrable selection of Γ.
A property of connected Baire spaces
1997
Abstract We give a topological version of a classical result of F. Sunyer Balaguer's on a local characterization of real polynomials. This is done by studying a certain property on a class of connected Baire spaces, thus allowing us to obtain a local characterization of repeated integrals of analytic maps on Banach spaces.
Restricted Uniform Boundedness in Banach Spaces
2009
Precise conditions for a subset A of a Banach space X are known in order that pointwise bounded on A sequences of bounded linear functionals on X are uniformly bounded. In this paper, we study such conditions under the extra assumption that the functionals belong to a given linear subspace Γ of X *. When Γ = X *, these conditions are known to be the same ones assuring a bounded linear operator into X , having A in its image, to be onto. We prove that, for A , deciding uniform boundedness of sequences in Γ is the same property as deciding surjectivity for certain classes of operators. Keywords: Uniform boundedness; thick set; boundedness deciding set Quaestiones Mathematicae 32(2…
On some parameters related to weak noncompactness in L1(μ,E)
2009
Abstract A weak measure of noncompactness γU is defined in a Banach space in terms of convex compactness. We obtain relationships between the measure γU (A) of a bounded set A in the Bochner space L1 (μ,E) and two parameters Π(A) and Δ1(A). Then the criterion for relative weak compactness due to Ulger [19] and Diestel-Ruess-Schachermayer [11] is recovered.
Homomorphisms and composition operators on algebras of analytic functions of bounded type
2005
Abstract Let U and V be convex and balanced open subsets of the Banach spaces X and Y, respectively. In this paper we study the following question: given two Frechet algebras of holomorphic functions of bounded type on U and V, respectively, that are algebra isomorphic, can we deduce that X and Y (or X * and Y * ) are isomorphic? We prove that if X * or Y * has the approximation property and H wu ( U ) and H wu ( V ) are topologically algebra isomorphic, then X * and Y * are isomorphic (the converse being true when U and V are the whole space). We get analogous results for H b ( U ) and H b ( V ) , giving conditions under which an algebra isomorphism between H b ( X ) and H b ( Y ) is equiv…
Norm, essential norm and weak compactness of weighted composition operators between dual Banach spaces of analytic functions
2017
Abstract In this paper we estimate the norm and the essential norm of weighted composition operators from a large class of – non-necessarily reflexive – Banach spaces of analytic functions on the open unit disk into weighted type Banach spaces of analytic functions and Bloch type spaces. We also show the equivalence of compactness and weak compactness of weighted composition operators from these weighted type spaces into a class of Banach spaces of analytic functions, that includes a large family of conformally invariant spaces like BMOA and analytic Besov spaces.
The Bishop–Phelps–Bollobás property for operators from c0 into some Banach spaces
2017
Abstract We exhibit a new class of Banach spaces Y such that the pair ( c 0 , Y ) has the Bishop–Phelps–Bollobas property for operators. This class contains uniformly convex Banach spaces and spaces with the property β of Lindenstrauss. We also provide new examples of spaces in this class.
The Fixed Point Property in Banach Spaces with the NUS-Property
1997
Abstract In this paper, we show that the weak nearly uniform smooth Banach spaces have the fixed point property for nonexpansive mappings.
A unified Pietsch domination theorem
2008
In this paper we prove an abstract version of Pietsch's domination theorem which unify a number of known Pietsch-type domination theorems for classes of mappings that generalize the ideal of absolutely p-summing linear operators. A final result shows that Pietsch-type dominations are totally free from algebraic conditions, such as linearity, multilinearity, etc.
On generalized a-Browder's theorem
2007
We characterize the bounded linear operators T satisfying generalized a-Browder's theorem, or generalized a-Weyl's theorem, by means of localized SVEP, as well as by means of the quasi-nilpotent part H0(�I T) asbelongs to certain sets of C. In the last part we give a general framework in which generalized a-Weyl's theorem follows for several classes of operators. 1. Preliminaries. Let L(X) denote the space of bounded linear oper- ators on an infinite-dimensional complex Banach space X. For T ∈ L(X), denote by α(T) the dimension of the kernel ker T, and by β(T) the codi- mension of the range T(X). The operator T ∈ L(X) is called upper semi- Fredholm if α(T) < ∞ and T(X) is closed, and lower …