Search results for "batterie"
showing 10 items of 77 documents
Lead Nanowires for Microaccumulators Obtained Through Indirect Electrochemical Template Deposition
2010
Metallic lead nanowires were deposited within pores of commercial anodic alumina membranes having an average pore diameter of 210 nm. "Direct" electrodeposition was attempted from 0.1 M Pb(NO 3 ) 2 aqueous solution with a variable concentration of H 3 BO 3 as a chelating agent, but it gave unsatisfactory results. An "indirect" two-step deposition procedure was then adopted, consisting of the anodic electrodeposition of α-PbO 2 nanowires, followed by their in situ reduction to metallic lead. Both these processes occurred at a high rate so that the indirect method led to a complete template pore filling with pure polycrystalline Pb in short times and with a high current efficiency.
Sensitive magnetometry reveals inhomogeneities in charge storage and weak transient internal currents in Li-ion cells
2020
The ever-increasing demand for high-capacity rechargeable batteries highlights the need for sensitive and accurate diagnostic technology for determining the state of a cell, for identifying and localizing defects, and for sensing capacity loss mechanisms. Here, we leverage atomic magnetometry to map the weak induced magnetic fields around Li-ion battery cells in a magnetically shielded environment. The ability to rapidly measure cells nondestructively allows testing even commercial cells in their actual operating conditions, as a function of state of charge. These measurements provide maps of the magnetic susceptibility of the cell, which follow trends characteristic for the battery materia…
Nanostructured lead-acid negative electrode with reduced graphene oxide
2021
Aim of this work is to develop a new nano-structured and nano-composite lead acid negative electrode with reduced graphene oxide (rGO). Nanostructured electrodes are fabricated by template electrodeposition of lead nanowires on a lead current collector. A polycarbonate track-etched membrane was used as a template (200 nm mean pores diameter). rGO was deposited on the nanostructured electrode from a graphene oxide (GO) dispersion in acetate buffer solution (ABS) (0.2 g/L). Potentiostatic deposition of rGO at -0.8 V vs. standard calomel electrode (SCE) was performed. Electrode with rGO was tested as negative electrode in cell with 5M sulfuric acid solution, a commercial pasted positive plate,…
Life Cycle Assessment di sistemi per le auto elettriche
2011
Il documento descrive la valutazione delle prestazioni energetico – ambientali di batterie Li- Ione adatte all'alimentazione della propulsione elettrica pura, comprensive del sistema BMS (Battery Management System), realizzata tramite l’applicazione della metodologia dell’Analisi del Ciclo di Vita (Life Cycle Assessment – LCA), in accordo alle norme della serie ISO 14040 ed all’International Reference Life Cycle Data System (ILCD) Handbook. L’attività è iniziata con un’analisi dettagliata dello stato dell’arte internazionale sulla LCA applicata alle batterie al Li-Ione, che ha definito il contesto scientifico di riferimento della valutazione energetico-ambientale condotta. E’ stata poi svil…
Numerical and experimental validation of a LiFePO4 battery model at steady state and transient operations
2013
In the paper some of the battery models proposed in literature are analysed in order to predict the battery performance and, then, make sure that the Battery Management System (BMS) that is a key component to check and control the status of the batteries within their specified safe operating conditions, works in best conditions.
Blockchain review for battery supply chain monitoring and battery trading
2022
The use of technologies such as Internet of Things (IoT), data processing and blockchain have allowed companies to serve their customers with better quality, efficiency, reliability and in the shortest possible time. The growing adoption of electric vehicles on the market has increased the demand for batteries that may have numerous manufacturers. Life expectancy is affected on manufacture, but also on operational conditions. A large number of parameters have a role on battery's health and thousands of data need to be evaluated and combined. The present work investigates the scenario of the battery industry in order to implement a blockchain-based platform for the supply chain implementatio…
Influence of Iron Sulfide Nanoparticle Sizes in Solid‐State Batteries**
2021
Abstract Given the inherent performance limitations of intercalation‐based lithium‐ion batteries, solid‐state conversion batteries are promising systems for future energy storage. A high specific capacity and natural abundancy make iron disulfide (FeS2) a promising cathode‐active material. In this work, FeS2 nanoparticles were prepared solvothermally. By adjusting the synthesis conditions, samples with average particle diameters between 10 nm and 35 nm were synthesized. The electrochemical performance was evaluated in solid‐state cells with a Li‐argyrodite solid electrolyte. While the reduction of FeS2 was found to be irreversible in the initial discharge, a stable cycling of the reduced sp…
Wood and Black Liquor-Based N-Doped Activated Carbon for Energy Application
2021
The research was funded by the Latvian Council of Science project “Nanostructured Nitrogenated Carbon Materials as Promoters in Energy Harvesting and Storage Technologies”, project No LZP-2018/1-0194, “New biomass origin materials hybrid carbon composites for energy storage” project No LZP-2020/2-0019 and postdoc project “Nitrogen and phosphorus-containing biomass based activated carbons for fuel cells and supercapacitors” project No 1.1.1.2/VIAA/4/20/596.
Iron and lithium-iron alkyl phosphates as nanostructured material for rechargeable batteries
2018
Abstract Inorganic/organic hybrid materials composed by iron atoms bonded to an alkyl phosphate can be easily synthesized by mixing at 110 °C iron chlorides with tri-alkyl phosphates. Since structural information on these products are lacking and taking into account that lithium/iron organic hybrid materials are important in lithium ion battery technology we report here the physico-chemical characterization of different hybrid lithium/iron butylphosphates. These materials are characterized by the presence of elongated hexagonal crystals stable up to 315 °C. The insertion of lithium does not affect the local structure. Thanks to such structures the material can be electrochemically-cycled an…
Prussian blue@MoS2 layer composites as highly efficient cathodes for sodium- and potassium-ion batteries
2018
Prussian blue (PB) represents a simple, economical, and eco‐friendly system as cathode material for sodium‐ion batteries (SIBs). However, structural problems usually worsen its experimental performance thus motivating the search for alternative synthetic strategies and the formation of composites that compensate these deficiencies. Herein, a straightforward approach for the preparation of PB/MoS2‐based nanocomposites is presented. MoS2 provides a 2D active support for the homogeneous nucleation of porous PB nanocrystals, which feature superior surface areas than those obtained by other methodologies, giving rise to a compact PB shell covering the full flake. The nanocomposite exhibits an ex…