Search results for "bayesian hierarchical model"

showing 5 items of 15 documents

Learning Bayesian Metanetworks from Data with Multilevel Uncertainty

2006

Managing knowledge by maintaining it according to dynamic context is among the basic abilities of a knowledge-based system. The two main challenges in managing context in Bayesian networks are the introduction of contextual (in)dependence and Bayesian multinets. We are presenting one possible implementation of a context sensitive Bayesian multinet-the Bayesian Metanetwork, which implies that interoperability between component Bayesian networks (valid in different contexts) can be also modelled by another Bayesian network. The general concepts and two kinds of such Metanetwork models are considered. The main focus of this paper is learning procedure for Bayesian Metanetworks.

business.industryComputer scienceTheoryofComputation_GENERALBayesian networkBayesian inferenceMachine learningcomputer.software_genreVariable-order Bayesian networkBayesian statisticsComputingMethodologies_PATTERNRECOGNITIONBayesian hierarchical modelingBayesian programmingGraphical modelArtificial intelligencebusinesscomputerDynamic Bayesian network
researchProduct

Natural induction: An objective bayesian approach

2009

The statistical analysis of a sample taken from a finite population is a classic problem for which no generally accepted objective Bayesian results seem to exist. Bayesian solutions to this problem may be very sensitive to the choice of the prior, and there is no consensus as to the appropriate prior to use.

education.field_of_studyAlgebra and Number Theorybusiness.industryApplied MathematicsBayesian probabilityPopulationBayes factorSample (statistics)Machine learningcomputer.software_genreBinomial distributionBayesian statisticsComputational MathematicsEconometricsBayesian hierarchical modelingGeometry and TopologyArtificial intelligencebusinesseducationcomputerAnalysisJeffreys priorMathematicsRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas
researchProduct

Epidemiological Information Systems

2008

medicine.medical_specialtyEmergency managementComputer sciencebusiness.industryEpidemiologymedicineInformation systemBayesian hierarchical modelingbusinessData science
researchProduct

Weighted Integration of Duration Information Across Visual and Auditory Modality Is Influenced by Modality-Specific Attention.

2021

We constantly integrate multiple types of information from different sensory modalities. Generally, such integration is influenced by the modality that we attend to. However, for duration perception, it has been shown that when duration information from visual and auditory modalities is integrated, the perceived duration of the visual stimulus leaned toward the duration of the auditory stimulus, irrespective of which modality was attended. In these studies, auditory dominance was assessed using visual and auditory stimuli with different durations whose timing of onset and offset would affect perception. In the present study, we aimed to investigate the effect of attention on duration integr…

medicine.medical_specialtygenetic structuresmedia_common.quotation_subjectduration perceptionNeurosciences. Biological psychiatry. NeuropsychiatryStimulus (physiology)AudiologyBehavioral NeuroscienceStimulus modalityPerceptionmedicinemodality-specific attentiontime perceptionBiological PsychiatryBayesian hierarchical modelmedia_commonOriginal ResearchModality (human–computer interaction)Modalitiesmultisensory integrationMultisensory integrationTime perceptionPsychiatry and Mental healthNeuropsychology and Physiological PsychologyNeurologyDuration (music)PsychologyRC321-571NeuroscienceFrontiers in human neuroscience
researchProduct

Conditional predictive inference for online surveillance of spatial disease incidence

2011

This paper deals with the development of statistical methodology for timely detection of incident disease clusters in space and time. The increasing availability of data on both the time and the location of events enables the construction of multivariate surveillance techniques, which may enhance the ability to detect localized clusters of disease relative to the surveillance of the overall count of disease cases across the entire study region. We introduce the surveillance conditional predictive ordinate as a general Bayesian model-based surveillance technique that allows us to detect small areas of increased disease incidence when spatial data are available. To address the problem of mult…

multiple comparisonsGeorgiaIncidenceSouth Carolinalagged loss functionBayes TheoremBayesian hierarchical modelspublic health surveillanceArticleconditional predictive ordinatePopulation Surveillancespatial dataSalmonella InfectionsCluster AnalysisHumansComputer SimulationPoisson Distribution
researchProduct