Search results for "bayesian statistics"

showing 10 items of 35 documents

Statistical biophysical parameter retrieval and emulation with Gaussian processes

2019

Abstract Earth observation from satellites poses challenging problems where machine learning is being widely adopted as a key player. Perhaps the most challenging scenario that we are facing nowadays is to provide accurate estimates of particular variables of interest characterizing the Earth's surface. This chapter introduces some recent advances in statistical bio-geophysical parameter retrieval from satellite data. In particular, we will focus on Gaussian process regression (GPR) that has excelled in parameter estimation as well as in modeling complex radiative transfer processes. GPR is based on solid Bayesian statistics and generally yields efficient and accurate parameter estimates, a…

Earth observationEmulationComputer scienceEstimation theorycomputer.software_genreField (computer science)Bayesian statisticssymbols.namesakeKrigingsymbolsData miningcomputerGaussian processInterpolation
researchProduct

Social Support and Resilience as Predictors of Prosocial Behaviors before and during COVID-19

2022

The objective of this research was to analyze the relationship between social support and resilience with prosocial behavior before and during the confinement caused by COVID-19. Materials and Methods: The participants were divided into a confined group (228 women and 84 men) and an unconfined group (153 women and 105 men), all of whom were university students. Instruments were applied to measure the variables proposed. Results: Social support predicted 24.4% of the variance in prosocial behavior among women and 12% among men in the confined group; no evidence of this relationship was found in the unconfined groups. Resilience predicted 7% of the variance in prosocial behavior among confine…

Health Information ManagementPsicología clínicaEstadística bayesianaLeadership and ManagementHealth PolicyHealth InformaticsComportament col·lectiuprosocial behavior; Bayesian statistics; resilience; social support; COVID-19Psicología social
researchProduct

Physics-Aware Gaussian Processes for Earth Observation

2017

Earth observation from satellite sensory data pose challenging problems, where machine learning is currently a key player. In recent years, Gaussian Process (GP) regression and other kernel methods have excelled in biophysical parameter estimation tasks from space. GP regression is based on solid Bayesian statistics, and generally yield efficient and accurate parameter estimates. However, GPs are typically used for inverse modeling based on concurrent observations and in situ measurements only. Very often a forward model encoding the well-understood physical relations is available though. In this work, we review three GP models that respect and learn the physics of the underlying processes …

MatemáticasEstimation theory0211 other engineering and technologiesContext (language use)02 engineering and technologyMissing dataBayesian statisticssymbols.namesakeKernel method0202 electrical engineering electronic engineering information engineeringsymbolsGeología020201 artificial intelligence & image processingGaussian process emulatorGaussian processAlgorithm021101 geological & geomatics engineeringInterpolation
researchProduct

A Bayesian approach to assess data from radionuclide activity analyses in environmental samples

2007

A Bayesian statistical approach is introduced to assess experimental data from the analyses of radionuclide activity concentration in environmental samples (low activities). A theoretical model has been developed that allows the use of known prior information about the value of the measurand (activity), together with the experimental value determined through the measurement. The model has been applied to data of the Inter-laboratory Proficiency Test organised periodically among Spanish environmental radioactivity laboratories that are producing the radiochemical results for the Spanish radioactive monitoring network. A global improvement of laboratories performance is produced when this pri…

RadionuclideChemistryBayesian probabilityExperimental dataBayesian networkBiochemistryAnalytical ChemistryBayesian statisticsStatisticsEnvironmental ChemistryMeasurement uncertaintyEnvironmental radioactivitySpectroscopyPrior informationAnalytica Chimica Acta
researchProduct

Integrating functional traits into correlative species distribution models to investigate the vulnerability of marine human activities to climate cha…

2021

Climate change and particularly warming are significantly impacting marine ecosystems and the services they provided. Temperature, as the main factor driving all biological processes, may influence ectotherms metabolism, thermal tolerance limits and distribution species patterns. The joining action of climate change and local stressors (including the increasing human marine use) may facilitate the spread of non-indigenous and native outbreak forming species, leading to associated economic consequences for marine coastal economies. Marine aquaculture is one among the most economic anthropogenic activities threatened by multiple stressors and in turn, by increasing hard artificial substrates …

Settore BIO/07 - Ecologia0106 biological sciencesEnvironmental EngineeringClimate ChangeNicheSpecies distributionVulnerabilityClimate changeHarmful foulingBayesian statistics010603 evolutionary biology01 natural sciencesPhysiological modelHumansEnvironmental ChemistryHuman ActivitiesMarine ecosystem14. Life underwaterWaste Management and DisposalEcosystembusiness.industry010604 marine biology & hydrobiologyEnvironmental resource managementTemperatureBayes TheoremMarine spatial planning15. Life on landMarine spatial planningPollutionFunctional-SDMGeographyThermal niche13. Climate actionEctothermThreatened speciesbusinessScience of The Total Environment
researchProduct

Physics-aware Gaussian processes in remote sensing

2018

Abstract Earth observation from satellite sensory data poses challenging problems, where machine learning is currently a key player. In recent years, Gaussian Process (GP) regression has excelled in biophysical parameter estimation tasks from airborne and satellite observations. GP regression is based on solid Bayesian statistics, and generally yields efficient and accurate parameter estimates. However, GPs are typically used for inverse modeling based on concurrent observations and in situ measurements only. Very often a forward model encoding the well-understood physical relations between the state vector and the radiance observations is available though and could be useful to improve pre…

Signal Processing (eess.SP)FOS: Computer and information sciences010504 meteorology & atmospheric sciences0211 other engineering and technologies02 engineering and technologyStatistics - Applications01 natural sciencessymbols.namesakeFOS: Electrical engineering electronic engineering information engineeringApplications (stat.AP)Electrical Engineering and Systems Science - Signal ProcessingGaussian processGaussian process emulator021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryEstimation theoryBayesian optimizationState vectorMissing dataBayesian statisticssymbolsGlobal Positioning SystembusinessAlgorithmSoftwareApplied Soft Computing
researchProduct

The geography of Spanish bank branches

2014

This article analyzes the determinants of bank branch location in Spain taking the role of geography explicitly into account. After a long period of intense territorial expansion, especially by savings banks, many of these firms are now involved in merger processes triggered off by the financial crisis, most of which entail the closing of many branches. However, given the contributions of this type of banks to limit financial exclusion, this process might exacerbate the consequences of the crisis for some disadvantaged social groups. Related problems such as new banking regulation initiatives (Basel III), or the current excess capacity in the sector add further relevance to this problem. We…

Statistics and ProbabilityActuarial sciencemunicipalityFinancial economicsProcess (engineering)bankBayesian statisticsbranchR1Basel IIIGeneralized linear mixed modelDisadvantagedSocial groupFinancial crisisRelevance (law)Capacity utilizationG21Statistics Probability and UncertaintyC11Journal of Applied Statistics
researchProduct

A Bayesian analysis of classical hypothesis testing

1980

The procedure of maximizing the missing information is applied to derive reference posterior probabilities for null hypotheses. The results shed further light on Lindley’s paradox and suggest that a Bayesian interpretation of classical hypothesis testing is possible by providing a one-to-one approximate relationship between significance levels and posterior probabilities.

Statistics and ProbabilityBayes factorBayesian inferenceStatistics::ComputationBayesian statisticsStatisticsEconometricsBayesian experimental designStatistics::MethodologyStatistics Probability and UncertaintyBayesian linear regressionLindley's paradoxBayesian averageMathematicsStatistical hypothesis testingTrabajos de Estadistica Y de Investigacion Operativa
researchProduct

What Bayesians Expect of Each Other

1991

Abstract Our goal is to study general properties of one Bayesian's subjective beliefs about the behavior of another Bayesian's subjective beliefs. We consider two Bayesians, A and B, who have different subjective distributions for a parameter θ, and study Bayesian A's expectation of Bayesian B's posterior distribution for θ given some data Y. We show that when θ can take only two values, Bayesian A always expects Bayesian B's posterior distribution to lie between the prior distributions of A and B. Conditions are given under which a similar result holds for an arbitrary real-valued parameter θ. For a vector parameter θ we present useful expressions for the mean vector and covariance matrix …

Statistics and ProbabilityBayesian probabilityPosterior probabilityBayesian inferenceStatistics::ComputationBayesian statisticsStatisticsBayesian experimental designBayesian hierarchical modelingApplied mathematicsStatistics Probability and UncertaintyBayesian linear regressionBayesian averageMathematicsJournal of the American Statistical Association
researchProduct

An introduction to Bayesian reference analysis: inference on the ratio of multinomial parameters

1998

This paper offers an introduction to Bayesian reference analysis, often described as the more successful method to produce non-subjective, model-based, posterior distributions. The ideas are illustrated in detail with an interesting problem, the ratio of multinomial parameters, for which no model-based Bayesian analysis has been proposed. Signposts are provided to the huge related literature.

Statistics and ProbabilityBayesian probabilityPosterior probabilityInferenceBayesian inferencecomputer.software_genreStatistics::ComputationBayesian statisticsComputingMethodologies_PATTERNRECOGNITIONPrior probabilityEconometricsData miningBayesian linear regressionBayesian averagecomputerMathematicsJournal of the Royal Statistical Society: Series D (The Statistician)
researchProduct