Search results for "bayesian"
showing 10 items of 604 documents
Benefits of a dance group intervention on institutionalized elder people: A Bayesian network approach
2018
[EN] The present study aims to explore the effects of an adapted classical dance intervention on the psychological and functional status of institutionalized elder people using a Bayesian network. All participants were assessed at baseline and after the 9 weeks period of the intervention. Measures included balance and gait, psychological well-being, depression, and emotional distress. According to the Bayesian network obtained, the dance intervention increased the likelihood of presenting better psychological well-being, balance, and gait. Besides, it also decreased the probabilities of presenting emotional distress and depression. These findings demonstrate that dancing has functional and …
The Local versus Global Dilemma of the Effects of Structural Funds
2011
This paper extends the analysis by Dall'erba and Le Gallo dealing with the impact of structural funds on the growth process of European regions. Like most of the other 18 contributions assessing the efficiency of structural funds, our article was based on a global model of b-convergence: one coefficient pertaining to the structural funds variable was estimated for the whole sample. In this paper, we extend this approach by performing local estimations, where one coefficient is estimated for each region, so that the impact of structural funds can be regionally differentiated. As in the previous contribution, the presence of spatial spillover effects is taken into account using spatial econom…
Grip Force Adjustments Reflect Prediction of Dynamic Consequences in Varying Gravitoinertial Fields
2018
International audience; Humans have a remarkable ability to adjust the way they manipulate tools through a genuine regulation of grip force according to the task. However, rapid changes in the dynamical context may challenge this skill, as shown in many experimental approaches. Most experiments adopt perturbation paradigms that affect only one sensory modality. We hypothesize that very fast adaptation can occur if coherent information from multiple sensory modalities is provided to the central nervous system. Here, we test whether participants can switch between different and never experienced dynamical environments induced by centrifugation of the body. Seven participants lifted an object …
Bayesian Survival Analysis to Model Plant Resistance and Tolerance to Virus Diseases
2017
Viruses constitute a major threat to large-scale production of crops worldwide producing important economical losses and undermining sustainability. We evaluated a new plant variety for resistance and tolerance to a specific virus through a comparison with other well-known varieties. The study is based on two independent Bayesian accelerated failure time models which assess resistance and tolerance survival times. Information concerning plant genotype and virus biotype were considered as baseline covariates and error terms were assumed to follow a modified standard Gumbel distribution. Frequentist approach to these models was also considered in order to compare the results of the study from…
Un approccio bayesiano per lo studio dell’associazione gene-ambiente in assenza di equilibrio di Hardy-Weinberg in un contesto multivariabile: studio…
2009
A Spatio-temporal Probabilistic Model of Hazard and Crowd Dynamics in Disasters for Evacuation Planning
2013
Published version of a chapter in the book: Recent Trends in Applied Artificial Intelligence. Also available from the publisher at: http://dx.doi.org/10.1007/978-3-642-38577-3_7 Managing the uncertainties that arise in disasters – such as ship fire – can be extremely challenging. Previous work has typically focused either on modeling crowd behavior or hazard dynamics, targeting fully known environments. However, when a disaster strikes, uncertainty about the nature, extent and further development of the hazard is the rule rather than the exception. Additionally, crowd and hazard dynamics are both intertwined and uncertain, making evacuation planning extremely difficult. To address this chal…
Modelling the presence of disease under spatial misalignment using Bayesian latent Gaussian models.
2015
Modelling patterns of the spatial incidence of diseases using local environmental factors has been a growing problem in the last few years. Geostatistical models have become popular lately because they allow estimating and predicting the underlying disease risk and relating it with possible risk factors. Our approach to these models is based on the fact that the presence/absence of a disease can be expressed with a hierarchical Bayesian spatial model that incorporates the information provided by the geographical and environmental characteristics of the region of interest. Nevertheless, our main interest here is to tackle the misalignment problem arising when information about possible covar…
Social Support and Resilience as Predictors of Prosocial Behaviors before and during COVID-19
2022
The objective of this research was to analyze the relationship between social support and resilience with prosocial behavior before and during the confinement caused by COVID-19. Materials and Methods: The participants were divided into a confined group (228 women and 84 men) and an unconfined group (153 women and 105 men), all of whom were university students. Instruments were applied to measure the variables proposed. Results: Social support predicted 24.4% of the variance in prosocial behavior among women and 12% among men in the confined group; no evidence of this relationship was found in the unconfined groups. Resilience predicted 7% of the variance in prosocial behavior among confine…
413 Bayesian coalescent inference of hepatitis C virus introduction from molecular sequences: The camporeale model
2006
Hessian PDF reweighting meets the Bayesian methods
2014
We discuss the Hessian PDF reweighting - a technique intended to estimate the effects that new measurements have on a set of PDFs. The method stems straightforwardly from considering new data in a usual $\chi^2$-fit and it naturally incorporates also non-zero values for the tolerance, $\Delta\chi^2>1$. In comparison to the contemporary Bayesian reweighting techniques, there is no need to generate large ensembles of PDF Monte-Carlo replicas, and the observables need to be evaluated only with the central and the error sets of the original PDFs. In spite of the apparently rather different methodologies, we find that the Hessian and the Bayesian techniques are actually equivalent if the $\Delta…