Search results for "bayesian"
showing 10 items of 604 documents
ELM Regularized Method for Classification Problems
2016
Extreme Learning Machine (ELM) is a recently proposed algorithm, efficient and fast for learning the parameters of single layer neural structures. One of the main problems of this algorithm is to choose the optimal architecture for a given problem solution. To solve this limitation several solutions have been proposed in the literature, including the regularization of the structure. However, to the best of our knowledge, there are no works where such adjustment is applied to classification problems in the presence of a non-linearity in the output; all published works tackle modelling or regression problems. Our proposal has been applied to a series of standard databases for the evaluation o…
A BMA Analysis to Assess the Urbanization and Climate Change Impact on Urban Watershed Runoff
2016
Abstract A reliable planning of urban drainage systems aimed at the mitigation of flooding, should take into account the possible change over time of impervious cover in the urban watershed and of the climate features. The present study proposes a methodology to analyze the changing in runoff response for a urban watershed accounting several plausible future states of new urbanization and climate. To this aim, several models simulating the evolution scenario of impervious watershed area and of climate change were adopted. However, it is known that an evolution scenario represents only one of all possible occurrence and it is not necessary the true future state, therefore it is needed to fin…
Detection of Internet robots using a Bayesian approach
2015
A large part of Web traffic on e-commerce sites is generated not by human users but by Internet robots: search engine crawlers, shopping bots, hacking bots, etc. In practice, not all robots, especially the malicious ones, disclose their identities to a Web server and thus there is a need to develop methods for their detection and identification. This paper proposes the application of a Bayesian approach to robot detection based on characteristics of user sessions. The method is applied to the Web traffic from a real e-commerce site. Results show that the classification model based on the cluster analysis with the Ward's method and the weighted Euclidean metric is very effective in robot det…
Analysis and modeling of wind directions time series
2013
This work aims at studying some aspects of wind directions in Italy and supplying appropriate models. A comparison is presented between independent mixture and Hidden Markov models, which seem to be appropriate as far as the series we studied.
Spatial Bayesian Modeling Applied to the Surveys of Xylella fastidiosa in Alicante (Spain) and Apulia (Italy)
2020
The plant-pathogenic bacterium Xylella fastidiosa was first reported in Europe in 2013, in the province of Lecce, Italy, where extensive areas were affected by the olive quick decline syndrome, caused by the subsp. pauca. In Alicante, Spain, almond leaf scorch, caused by X. fastidiosa subsp. multiplex, was detected in 2017. The effects of climatic and spatial factors on the geographic distribution of X. fastidiosa in these two infested regions in Europe were studied. The presence/absence data of X. fastidiosa in the official surveys were analyzed using Bayesian hierarchical models through the integrated nested Laplace approximation (INLA) methodology. Climatic covariates were obtained from …
Bayesian chronological analyses consistent with synchronous age of 12,835-12,735 Cal BP for Younger Dryas boundary on four continents
2015
The Younger Dryas impact hypothesis posits that a cosmic impact across much of the Northern Hemisphere deposited the Younger Dryas boundary (YDB) layer, containing peak abundances in a variable assemblage of proxies, including magnetic and glassy impact-related spherules, high-temperature minerals and melt glass, nanodiamonds, carbon spherules, aciniform carbon, platinum, and osmium. Bayesian chronological modeling was applied to 354 dates from 23 stratigraphic sections in 12 countries on four continents to establish a modeled YDB age range for this event of 12,835-12,735 Cal B.P. at 95% probability. This range overlaps that of a peak in extraterrestrial platinum in the Greenland Ice Sheet …
New Optimization and Security Approaches to Enhance the Smart Grid Performance and Reliability
2016
International audience; Nowadays, the Smart Grid (SG) is becoming smarter thanks to the integration of different information and communication technologies to enhance the reliability and efficiency of the power grid. However, several issues should be met to ensure high SG performance. Among these issues, we cite the problem of electric vehicles (EVs) integration into the SG to avoid electricity intermittence due to the important load that EVs can create. Another issue is the SG communication network security that can be attempted by malicious intruders in order to create damages and make the power grid instable. In this context, we propose at a first level a Bayesian game-theory model that …
Leveraging Uncertainty Estimates to Improve Segmentation Performance in Cardiac MR
2021
International audience; In medical image segmentation, several studies have used Bayesian neural networks to segment and quantify the uncertainty of the images. These studies show that there might be an increased epistemic uncertainty in areas where there are semantically and visually challenging pixels. The uncertain areas of the image can be of a great interest as they can possibly indicate the regions of incorrect segmentation. To leverage the uncertainty information, we propose a segmentation model that incorporates the uncertainty into its learning process. Firstly, we generate the uncertainty estimate (sample variance) using Monte-Carlo dropout during training. Then we incorporate it …
Automated uncertainty quantification analysis using a system model and data
2015
International audience; Understanding the sources of, and quantifying the magnitude of, uncertainty can improve decision-making and, thereby, make manufacturing systems more efficient. Achieving this goal requires knowledge in two separate domains: data science and manufacturing. In this paper, we focus on quantifying uncertainty, usually called uncertainty quantification (UQ). More specifically, we propose a methodology to perform UQ automatically using Bayesian networks (BN) constructed from three types of sources: a descriptive system model, physics-based mathematical models, and data. The system model is a high-level model describing the system and its parameters; we develop this model …
A modeling approach to evaluate the influence of spatial and temporal structure of an epidemiological surveillance network on the intensity of phytos…
2017
National audience