Search results for "bayesian"
showing 10 items of 604 documents
Mapping child maltreatment risk: a 12-year spatio-temporal analysis of neighborhood influences.
2017
Abstract Background ‘Place’ matters in understanding prevalence variations and inequalities in child maltreatment risk. However, most studies examining ecological variations in child maltreatment risk fail to take into account the implications of the spatial and temporal dimensions of neighborhoods. In this study, we conduct a high-resolution small-area study to analyze the influence of neighborhood characteristics on the spatio-temporal epidemiology of child maltreatment risk. Methods We conducted a 12-year (2004–2015) small-area Bayesian spatio-temporal epidemiological study with all families with child maltreatment protection measures in the city of Valencia, Spain. As neighborhood units…
Modeling Chickenpox Dynamics with a Discrete Time Bayesian Stochastic Compartmental Model
2018
[EN] We present a Bayesian stochastic susceptible-exposed-infectious-recovered model in discrete time to understand chickenpox transmission in the Valencian Community, Spain. During the last decades, different strategies have been introduced in the routine immunization program in order to reduce the impact of this disease, which remains a public health's great concern. Under this scenario, a model capable of explaining closely the dynamics of chickenpox under the different vaccination strategies is of utter importance to assess their effectiveness. The proposed model takes into account both heterogeneous mixing of individuals in the population and the inherent stochasticity in the transmiss…
Corrigendum to three papers that deal with “Anti”-Bayesian Pattern Recognition [Pattern Recognition]
2014
In the papers 1 (Thomas and Oommen, 2013), 2 (Oommen and Thomas, 2014) and 3 (Thomas and Oommen, 2013), and their associated conference versions cited in those papers, we had introduced a new method of so-called "Anti"-Bayesian Pattern Recognition (PR) which achieved the classification using only a few (sometimes as few as two) points distant from the mean. While the PR strategy, in and of itself, is accurate, the claim that it was based on the Order Statistics (OS) of the distributions of the features is not. The PR and classification results are rather founded on the symmetric quantiles and not on the symmetric OSs. This brief paper corrects the flawed claim presented in those papers. Hig…
Fast Fingerprints Classification Only Using the Directional Image
2007
The classification phase is an important step of an automatic fingerprint identification system, where the goal is to restrict only to a subset of the whole database the search time. The proposed system classifies fingerprint images in four classes using only directional image information. This approach, unlike the literature approaches, uses the acquired fingerprint image without enhancement phases application. The system extracts only directional image and uses three concurrent decisional modules to classify the fingerprint. The proposed system has a high classification speed and a very low computational cost. The experimental results show a classification rate of 87.27%.
Properties of the Binary Neutron Star Merger GW170817
2019
On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which ar…
Testing LTB void models without the cosmic microwave background or large scale structure: new constraints from galaxy ages
2012
We present new observational constraints on inhomogenous models based on observables independent of the CMB and large-scale structure. Using Bayesian evidence we find very strong evidence for homogeneous LCDM model, thus disfavouring inhomogeneous models. Our new constraints are based on quantities independent of the growth of perturbations and rely on cosmic clocks based on atomic physics and on the local density of matter.
GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙
2020
LIGO Scientific Collaboration and Virgo Collaboration: et al.
Recent Advances in Bayesian Inference in Cosmology and Astroparticle Physics Thanks to the MultiNest Algorithm
2012
We present a new algorithm, called MultiNest, which is a highly efficient alternative to traditional Markov Chain Monte Carlo (MCMC) sampling of posterior distributions. MultiNest is more efficient than MCMC, can deal with highly multi-modal likelihoods and returns the Bayesian evidence (or model likelihood, the prime quantity for Bayesian model comparison) together with posterior samples. It can thus be used as an all-around Bayesian inference engine. When appropriately tuned, it also provides an exploration of the profile likelihood that is competitive with what can be obtained with dedicated algorithms.
Oceanic and atmospheric linkages with short rainfall season intraseasonal statistics over Equatorial Eastern Africa and their predictive potential
2014
Despite earlier studies over various parts of the world including equatorial Eastern Africa (EEA) showing that intraseasonal statistics of wet and dry spells have spatially coherent signals and thus greater predictability potential, no attempts have been made to identify the predictors for these intraseasonal statistics. This study therefore attempts to identify the predictors (with a 1-month lead time) for some of the subregional intraseasonal statistics of wet and dry spells (SRISS) which showed the greatest predictability potential during the short rainfall season over EEA. Correlation analysis between the SRISS and seasonal rainfall totals on one hand and the predefined predictors on th…
The Bayesian Learning Automaton — Empirical Evaluation with Two-Armed Bernoulli Bandit Problems
2009
The two-armed Bernoulli bandit (TABB) problem is a classical optimization problem where an agent sequentially pulls one of two arms attached to a gambling machine, with each pull resulting either in a reward or a penalty. The reward probabilities of each arm are unknown, and thus one must balance between exploiting existing knowledge about the arms, and obtaining new information.