Search results for "beta decay"

showing 10 items of 501 documents

Simultaneous analysis of neutrinoless double beta decay and LHC pp-cross sections: limits on the left-right mixing angle

2015

The extension of the Standard Model of electroweak interactions, to accommodate massive neutrinos and/or right-handed currents, is one of the fundamental questions to answer in the cross-field of particle and nuclear physics. The consequences of such extensions would reflect upon nuclear decays, like the very exotic nuclear double-beta-decay, as well as upon high-energy proton-proton reactions of the type performed at the LHC accelerator. In this talk we shall address this question by looking at the results reported by the ATLAS and CMS collaborations, where the excitation and decay of a heavy-mass boson may be mediated by a heavy-mass neutrino in proton-proton reactions leading to two jets…

PhysicsHistoryParticle physicsLarge Hadron ColliderElectroweak interactionNuclear TheoryHigh Energy Physics::PhenomenologyFísicaneutrinoless double beta decayComputer Science ApplicationsEducationStandard ModelNuclear physicsdouble-beta-decayDouble beta decayLHC acceleratorHigh Energy Physics::ExperimentLHCNeutrinoNuclear ExperimentMixing (physics)Ciencias ExactasLeptonBoson
researchProduct

Double beta decay and the quest for Majorana neutrinos

2020

Abstract The observation of neutrinoless double beta (0νββ) decay remains crucial for understanding lepton number violation. The inverse half-life for 0νββ-decay is given by the product of a phase space factor (PSF), a nuclear matrix element (NME), which both rely on theoretical description, and a function f containing the physics beyond the standard model. Phase space factors and nuclear matrix elements have been evaluated, or are under evaluation, systematically for all processes of interest. The nuclear matrix elements have been calculated within the framework of the microscopic interacting boson model (IBM-2), and phase space factors have been evaluated using exact Dirac electron wave f…

PhysicsHistoryParticle physicsMAJORANADouble beta decayHigh Energy Physics::ExperimenthiukkasfysiikkaNeutrinoydinfysiikkaComputer Science ApplicationsEducationJournal of Physics: Conference Series
researchProduct

Nuclear and weak interaction aspects of neutrinoless double beta decay: Recent results

2012

The determination of the value of the light neutrino mass, as well as the determination of the nature of the neutrino, are two of the fundamental questions which motivate the experimental search of signals of neutrinoless double beta decay transitions. Here, we shall review some of the the essentials of the theory, based on both nuclear structure and elementary particle physics, relevant for the understanding of the problem.

PhysicsHistoryParticle physicsNuclear structureFísicaexperimental searchElementary particleWeak interactionComputer Science ApplicationsEducationElementary particle physicsNuclear physicsDouble beta decayHigh Energy Physics::Experimentelementary particleNeutrinolight neutrino massValue (mathematics)
researchProduct

Physics of nuclear processes triggered by the interplay of strong and weak interactions

2012

Neutrinoless double beta (0νββ) decay of nuclei is a process that requires the neutrino to be a massive Majorana particle and thus cannot proceed in the standard model of electro-weak interactions. Recent results of the neutrino-oscillation experiments have produced accurate information on the mixing of neutrinos and their squared mass differences. The 0νββ decay takes place in atomic nuclei where it can be observed, at least in principle, by underground neutrino experiments. The information about the weak-interaction observables, like the neutrino mass, has to be filtered from the data through the nuclear matrix elements (NMEs). In this article recent work of the Jyv¨askyl¨a group on the N…

PhysicsHistoryParticle physicsSterile neutrinoHigh Energy Physics::PhenomenologyBeta decayBeta-decay stable isobarsComputer Science ApplicationsEducationNuclear physicsMAJORANATheoretical nuclear physicsDouble beta decayAtomic nucleusteoreettinen ydinfysiikkaHigh Energy Physics::ExperimentNeutrinoNeutrino oscillationNuclear Experiment
researchProduct

The NEXT double beta decay experiment

2016

NEXT (Neutrino Experiment with a Xenon TPC) is a neutrinoless double-beta (ββ0v) decay experiment at Laboratorio Subterraneo de Canfranc (LSC). It is an electroluminescent Time Projection Chamber filled with high pressure 136Xe gas with separated function capabilities for calorimetry and tracking. Energy resolution and background suppression are the two key features of any neutrinoless double beta decay experiment. NEXT has both good energy resolution (< 1% FWHM) and an extra handle for background identification provided by track reconstruction. We expect a background rate of 4 × 10-4 counts keV-1 kg-1 yr-1, and a sensitivity to the Majorana neutrino mass of between 80-160 meV (depending on…

PhysicsHistoryParticle physicsTime projection chamberScale (ratio)010308 nuclear & particles physicsDetectorchemistry.chemical_elementTracking (particle physics)01 natural sciencesComputer Science ApplicationsEducationNuclear physicsMAJORANAXenonchemistryDouble beta decay0103 physical sciencesNeutrino010306 general physicsJournal of Physics: Conference Series
researchProduct

Single Particle Levels and ββ-Decay Matrix Elements in The Interacting Boson Model

2018

Recently a new method to calculate the occupancies of single particle levels in atomic nuclei was developed in the context of the microscopic interacting boson model, in which neutron and proton degrees of freedom are treated explicitly (IBM-2). The energies of the single particle levels constitute a very important input for the calculation of the occupancies in this method, and further they play important role in the calculation of double beta decay nuclear matrix elements. Here we discuss how the 0νββ, 0νhββ, and 2νββ-decay nuclear matrix elements (NMEs) are affected when the energies of single particle levels are changed. peerReviewed

PhysicsHistoryProtonNuclear TheoryDegrees of freedom (physics and chemistry)double beta decayContext (language use)nuclear matrix elementsComputer Science ApplicationsEducationNuclear physicsMatrix (mathematics)Double beta decayAtomic nucleusNeutronInteracting boson modelNuclear Experimentydinfysiikka
researchProduct

βdecay of102Y produced in projectile fission of238U

2012

The population of 102Zr following the β decay of 102Y produced in the projectile fission of 238U at the GSI facility in Darmstadt, Germany has been studied. 102Y is known to ß decay into 102Zr via two states, one of high spin and the other low spin. These states preferentially populate different levels in the 102Zr daughter. In this paper the intensities of transitions in 102Zr observed are compared with those from the decay of the low-spin level studied at the TRISTAN facility at Brookhaven National Laboratory and of the high-spin level studied at the JOSEF separator at the Kernforschungsanlage Jülich.

PhysicsHistoryeducation.field_of_studyCluster decayFissionProjectilePopulationBeta decayddc:Computer Science ApplicationsEducationNuclear physicsSubatomic PhysicsHigh Energy Physics::ExperimentAtomic physicsNuclear ExperimentSpin (physics)National laboratoryeducationJournal of Physics: Conference Series
researchProduct

A novel approach to quantifying the sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchic…

2017

We present a novel approach to derive constraints on neutrino masses from cosmological data, while taking into account our ignorance of the neutrino mass ordering. We derive constraints from a combination of current and future cosmological datasets on the total neutrino mass $M_\nu$ and on the mass fractions carried by each of the mass eigenstates, after marginalizing over the (unknown) neutrino mass ordering, either normal (NH) or inverted (IH). The bounds take therefore into account the uncertainty related to our ignorance of the mass hierarchy. This novel approach is carried out in the framework of Bayesian analysis of a typical hierarchical problem. In this context, the choice of the ne…

PhysicsHyperparameterNuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsCosmic microwave backgroundPosterior probabilityCosmic background radiationFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural scienceslcsh:QC1-999BaryonHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Double beta decay0103 physical sciencesBayesian hierarchical modelingNeutrino010303 astronomy & astrophysicslcsh:PhysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Measurement of theββDecay Half-Life ofTe130with the NEMO-3 Detector

2011

This Letter reports results from the NEMO-3 experiment based on an exposure of 1275 days with 661g of 130Te in the form of enriched and natural tellurium foils. With this data set the double beta decay rate of 130Te is found to be non-zero with a significance of 7.7 standard deviations and the half-life is measured to be T1/2 = (7.0 +/- 0.9(stat) +/- 1.1(syst)) x 10^{20} yr. This represents the most precise measurement of this half-life yet published and the first real-time observation of this decay.

PhysicsIsotope010308 nuclear & particles physicsStable isotope ratioGeneral Physics and AstronomyHalf-lifechemistry.chemical_element01 natural sciencesBeta decayNuclear physicschemistryDouble beta decay0103 physical sciencesNeutrino Ettore Majorana Observatory010306 general physicsTelluriumRadioactive decayPhysical Review Letters
researchProduct

New levels in 118Pd observed in the beta-decay of very neutron-rich 118Rh isotope

2006

We investigate the β decay of very neutron-rich 118Rh isotope using on-line mass-separated sources which are produced by applying 25 MeV proton induced symmetric fission of natural uranium at the IGISOL facility. The β–γ and γ–γ coincidence spectroscopy is employed to establish the level scheme of daughter nucleus 118Pd. Five low-lying new levels are identified for the first time with tentative spin and parity assignments based on the even-mass Pd systematics.

PhysicsIsotopeFissionNuclear TheoryGeneral Physics and AstronomyNatural uraniumBeta decayCoincidenceNuclear physicsmedicine.anatomical_structuremedicineNeutronNuclear ExperimentSpectroscopyNucleus
researchProduct