Search results for "beta"

showing 10 items of 3374 documents

β3-Adrenoceptor agonists for overactive bladder syndrome: Role of translational pharmacology in a repositioning clinical drug development project

2016

β3-Adrenoceptor agonists were originally considered as a promising drug class for the treatment of obesity and/or type 2 diabetes. When these development efforts failed, they were repositioned for the treatment of the overactive bladder syndrome. Based on the example of the β3-adrenoceptor agonist mirabegron, but also taking into consideration evidence obtained with ritobegron and solabegron, we discuss challenges facing a translational pharmacology program accompanying clinical drug development for a first-in-class molecule. Challenges included generic ones such as ligand selectivity, species differences and drug target gene polymorphisms. Challenges that are more specific included changin…

0301 basic medicineAgonistmedicine.drug_classUrinary BladderAdrenergic beta-3 Receptor AgonistsAdrenergic beta-3 Receptor AgonistsPharmacologyLigandsAntibodiesTranslational Research Biomedical03 medical and health sciencesSolabegronmedicineAnimalsHumansPharmacology (medical)PharmacologyUrinary Bladder Overactivebusiness.industryDrug RepositioningSyndromeOveractive bladder syndromeDrug repositioning030104 developmental biologyDrug classDrug developmentReceptors Adrenergic beta-3Adrenergic beta-3 Receptor AntagonistsbusinessMirabegronmedicine.drugPharmacology & Therapeutics
researchProduct

β(3)‐Adrenoceptors in the normal and diseased urinary bladder—What are the open questions?

2019

β(3)‐Adrenoceptor agonists are used in the treatment of overactive bladder syndrome. Although the relaxant response to adrenergic stimulation in human detrusor smooth muscle cells is mediated mainly via β(3)‐adrenoceptors, the plasma concentrations of the therapeutic dose of mirabegron, the only clinically approved β(3)‐adrenoceptor agonist, are considerably lower than the EC(50) for causing direct relaxation of human detrusor, suggesting a mechanism of action other than direct relaxation of detrusor smooth muscle. However, the site and mechanism of action of β(3)‐adrenoceptor agonists in the bladder have not been firmly established. Postulated mechanisms include prejunctional suppression o…

0301 basic medicineAgonistmedicine.medical_specialtyAdrenergic receptormedicine.drug_classUrinary BladderAdrenergic beta-3 Receptor Agonistsurologic and male genital diseasesThemed Section: Review Articles03 medical and health sciences0302 clinical medicineTherapeutic indexDesensitization (telecommunications)Internal medicineMedicineAnimalsHumansPharmacologyUrinary bladderRelaxation (psychology)business.industry030104 developmental biologymedicine.anatomical_structureEndocrinologyMechanism of actionReceptors Adrenergic beta-3medicine.symptombusinessMirabegron030217 neurology & neurosurgerymedicine.drug
researchProduct

Tocotrienol Affects Oxidative Stress, Cholesterol Homeostasis and the Amyloidogenic Pathway in Neuroblastoma Cells: Consequences for Alzheimer’s Dise…

2016

One of the characteristics of Alzheimer´s disease (AD) is an increased amyloid load and an enhanced level of reactive oxidative species (ROS). Vitamin E has known beneficial neuroprotective effects, and previously, some studies suggested that vitamin E is associated with a reduced risk of AD due to its antioxidative properties. However, epidemiological studies and nutritional approaches of vitamin E treatment are controversial. Here, we investigate the effect of α-tocotrienol, which belongs to the group of vitamin E, on AD-relevant processes in neuronal cell lines. In line with the literature, α-tocotrienol reduced the ROS level in SH-SY5Y cells. In the presence of tocotrienols, cholesterol…

0301 basic medicineAlzheimer´s diseasemedicine.medical_treatmentvitamin Eγ-secretasemedicine.disease_causeAntioxidantslcsh:ChemistryNeuroblastomachemistry.chemical_compoundAβ degradation0302 clinical medicineβ-secretaselcsh:QH301-705.5SpectroscopyNeuronschemistry.chemical_classificationbiologyTocotrienolsGeneral Medicinetocopherol3. Good healthComputer Science ApplicationsCholesterolNeuroprotective AgentsTocotrienolmedicine.medical_specialtyAmyloidamyloid-βNeuroprotectionArticleGene Expression Regulation EnzymologicCatalysisCell LineInorganic Chemistry03 medical and health sciencesAlzheimer DiseaseInternal medicinemedicineHumanstocotrienolPhysical and Theoretical ChemistryMolecular BiologyReactive oxygen speciesAmyloid beta-PeptidesCholesterolVitamin EOrganic Chemistrytocotrienol; vitamin E; Alzheimer´s disease; amyloid-β; tocopherol; Aβ degradation; β-secretase; γ-secretaseOxidative Stress030104 developmental biologyEndocrinologychemistrylcsh:Biology (General)lcsh:QD1-999biology.proteinAmyloid Precursor Protein SecretasesReactive Oxygen SpeciesAmyloid precursor protein secretase030217 neurology & neurosurgeryOxidative stressInternational Journal of Molecular Sciences
researchProduct

Direct Sensing of Nutrients via a LAT1-like Transporter in Drosophila Insulin-Producing Cells

2016

Summary Dietary leucine has been suspected to play an important role in insulin release, a hormone that controls satiety and metabolism. The mechanism by which insulin-producing cells (IPCs) sense leucine and regulate insulin secretion is still poorly understood. In Drosophila, insulin-like peptides (DILP2 and DILP5) are produced by brain IPCs and are released in the hemolymph after leucine ingestion. Using Ca2+-imaging and ex vivo cultured larval brains, we demonstrate that IPCs can directly sense extracellular leucine levels via minidiscs (MND), a leucine transporter. MND knockdown in IPCs abolished leucine-dependent changes, including loss of DILP2 and DILP5 in IPC bodies, consistent wit…

0301 basic medicineAmino Acid Transport Systemsheavy-chainmedicine.medical_treatmentInsulinsamino acid transporter0302 clinical medicinegenetics [Drosophila Proteins]cytology [Drosophila melanogaster]Glutamate DehydrogenaseHemolymphInsulin-Secreting Cellsmetabolism [Drosophila melanogaster]HemolymphDrosophila;Drosophila insulin-like peptides;amino acid transporter;food;glutamate dehydrogenase;glycemia;growth;insulin-producing cells;minidiscs;starvationDrosophila ProteinsProtein Isoformsmetabolism [Calcium]genetics [Insulins]genetics [Amino Acid Transport Systems]lcsh:QH301-705.5minidiscsGene knockdowncytology [Larva]pancreatic beta-cellglutamate dehydrogenaseBrainmetabolism [Hemolymph]secretionDrosophila melanogasterBiochemistryLarvaAlimentation et NutritionDrosophilaLeucineSignal Transductionglucose-transportgenetics [Glutamate Dehydrogenase]genetics [Protein Isoforms]growthamino-acidsmetabolism [Drosophila Proteins][SDV.BC]Life Sciences [q-bio]/Cellular BiologyNutrient sensingmetabolism [Larva]Biologyinsulin-producing cellsArticleGeneral Biochemistry Genetics and Molecular Biologymetabolism [Amino Acid Transport Systems]metabolism [Insulins]03 medical and health sciencesLeucineparasitic diseasesmedicineFood and NutritionAnimalsddc:610cytology [Insulin-Secreting Cells]cardiovascular diseasesAmino acid transporterMnd protein Drosophilaadministration & dosage [Leucine]metabolism [Protein Isoforms]Ilp5 protein Drosophilacytology [Brain]foodGlutamate dehydrogenaseInsulinNeurosciencesstarvationGlucose transportermetabolism [Insulin-Secreting Cells]glutamate-dehydrogenasel-leucineglycemia030104 developmental biologyGene Expression Regulationlcsh:Biology (General)metabolism [Brain]metabolism [Glutamate Dehydrogenase]Neurons and Cognitionmetabolism [Leucine]CalciumDrosophila insulin-like peptidesmetabolismfat-cells030217 neurology & neurosurgeryCell Reports
researchProduct

Curcumin-like compounds designed to modify amyloid beta peptide aggregation patterns

2017

International audience; Curcumin is a natural polyphenol able to bind the amyloid beta peptide, which is related to Alzheimer's disease, and modify its self-assembly pathway. This paper focuses on a multi-disciplinary study that starts from the design of curcumin-like compounds with the key chemical features required for inhibiting amyloid beta aggregation, and reports the effects of these compounds on the in vitro aggregation of amyloid beta peptides. Chemoinformatic screening was performed through the calculation of molecular descriptors that were able to highlight the drug-like profile, followed by docking studies with an amyloid beta peptide fibril. The computational design underlined t…

0301 basic medicineAmyloid betaGeneral Chemical Engineering[SDV]Life Sciences [q-bio]PeptideFibrillaw.inventionChemical compounds03 medical and health scienceschemistry.chemical_compoundConfocal microscopylawMolecular descriptorDiagnosisFluorescence spectroscopyGlycoproteinschemistry.chemical_classificationbiologyNeurodegenerative diseasesProteinsAlzheimer amyloid peptide oxadiazole curcuminGeneral ChemistrySettore CHIM/06 - Chimica OrganicaIn vitro030104 developmental biologychemistryBiochemistryDocking (molecular)Curcuminbiology.proteinCell culturePeptides
researchProduct

The Blood-Brain Barrier in Alzheimer’s Disease

2020

The accumulation of neurotoxic amyloid-beta (Aβ) in the brain is one of the characteristic hallmarks of Alzheimer's disease (AD). Aβ-peptide brain homeostasis is governed by its production and various clearance mechanisms. The blood-brain barrier provides a large surface area for influx and efflux mechanisms into and out of the brain. Different transporters and receptors have been implicated to play crucial roles in Aβ clearance from brain. Besides Aβ transport, the blood-brain barrier tightly regulates the brain's microenvironment; however, vascular alterations have been shown in patients with AD. Here, we summarize how the blood-brain barrier changes during aging and in disease and focus …

0301 basic medicineAmyloid beta-PeptidesChemistryBrainATP-binding cassette transporterTransporterBlood–brain barrierLRP1ArticlePeptide Fragments03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structureReceptors LDLAlzheimer DiseaseBlood-Brain BarriermedicineHumansEffluxReceptorNeuroscience030217 neurology & neurosurgeryHomeostasisLipoprotein
researchProduct

Hsp60, amateur chaperone in amyloid-beta fibrillogenesis

2016

BACKGROUND: Molecular chaperones are a very special class of proteins that play essential roles in many cellular processes like folding, targeting and transport of proteins. Moreover, recent evidence indicates that chaperones can act as potentially strong suppressor agents in Alzheimer's disease (AD). Indeed, in vitro experiments demonstrate that several chaperones are able to significantly slow down or suppress aggregation of Aβ peptide and in vivo studies reveal that treatment with specific chaperones or their overexpression can ameliorate some distinct pathological signs characterizing AD. METHODS: Here we investigate using a biophysical approach (fluorescence, circular dichroism (CD), t…

0301 basic medicineAmyloidMolecular chaperonesAmyloid betaBiophysicsPlasma protein bindingInhibition mechanismsBiochemistryChaperoninChaperonin03 medical and health sciences0302 clinical medicinemedicineHumansInhibition mechanismMolecular BiologyAmyloid aggregationAmyloid beta-PeptidesbiologyNeurodegenerationP3 peptideFibrillogenesisChaperonin 60medicine.diseaseAlzheimer's disease treatmentCell biology030104 developmental biologyChaperone (protein)biology.proteinHSP60030217 neurology & neurosurgeryProtein BindingBiochimica et Biophysica Acta (BBA) - General Subjects
researchProduct

Beyond Amyloid - Widening the View on Alzheimer's Disease

2017

For 25 years, the amyloid cascade hypothesis, based on the finding that mutations in the amyloid precursor protein are closely linked to familial forms of Alzheimer's disease (AD), dominated the research on this disease. Recent failures of clinical anti-amyloidogenic trials, however, substantially support the reasoning (i) that the pathomechanisms that trigger familial AD, namely the generation, aggregation, and deposition of amyloid beta, cannot necessarily be extrapolated to sporadic cases and (ii) that amyloid beta represents a prominent histopathological feature in AD but not its exclusive causative factor. In autumn 2016, the Volkswagen Foundation hosted the Herrenhausen Symposium ‘Bey…

0301 basic medicineAmyloidbiologyAmyloid betabusiness.industryDiseaseBiochemistryMini review03 medical and health sciencesCellular and Molecular Neuroscience030104 developmental biology0302 clinical medicinemental disordersAmyloid precursor proteinbiology.proteinMedicineAmyloid cascadebusinessNeuroscience030217 neurology & neurosurgeryJournal of Neurochemistry
researchProduct

Crosstalk between angiotensin and the nonamyloidogenic pathway of Alzheimer's amyloid precursor protein.

2017

The association between hypertension and an increased risk for Alzheimer's disease (AD) and dementia is well established. Many data suggest that modulation of the renin-angiotensin system may be meaningful for the prevention and therapy of neurodegenerative disorders, in particular AD. Proteolytic cleavage of the amyloid precursor protein (APP) by α-secretase precludes formation of neurotoxic Aβ peptides and is expected to counteract the development of AD. An established approach for the up-regulation of α-secretase cleavage is the activation of G protein-coupled receptors (GPCRs). Therefore, our study aimed to analyze whether stimulation of angiotensin AT1 or AT2 receptors stably expressed…

0301 basic medicineAngiotensin receptorAngiotensinsBiochemistryReceptor Angiotensin Type 2Receptor Angiotensin Type 103 medical and health sciencesAmyloid beta-Protein PrecursorAlzheimer DiseaseCyclohexanesGTP-Binding Protein gamma SubunitsAmyloid precursor proteinHumansMolecular Biologybeta-ArrestinsG protein-coupled receptorAngiotensin II receptor type 1biologyChemistryGTP-Binding Protein beta SubunitsP3 peptideCell BiologyAmyloidosisAngiotensin IIGTP-Binding Protein alpha SubunitsBiochemistry of Alzheimer's diseaseCell biology030104 developmental biologyHEK293 CellsPyrazinesProteolysisbiology.proteinAmyloid Precursor Protein SecretasesAmyloid precursor protein secretaseThe FEBS journal
researchProduct

Renin-Angiotensin System Inhibition in Cardiovascular Patients at the Time of COVID19: Much Ado for Nothing? A Statement of Activity from the Directo…

2020

Cardiovascular diseases, in particular hypertension, as well as the cardiovascular treatment with Renin-Angiotensin System inhibitors such as Angiotensin Converting Enzyme (ACE) inhibitors and Angiotensin Receptor Blockers (ARBs), are claimed once again as mechanisms of Severe Acute Respiratory Syndrome (SARS) during the COVID-19 outbreak due to Cov-2 epidemics. In vitro studies are available to support the eventual role of ACE inhibitors and ARBs in both the promotion and antagonism of the disease. The available literature, indeed, presents contrasting results, all concentrated in experimental models. Evidence in humans is lacking that those mechanisms are actually occurring in the present…

0301 basic medicineAngiotensin-Converting Enzyme InhibitorsDiseaseoutcomescardiovascular diseases; COVID-19; hypertension; infection; outcomes; Betacoronavirus; COVID-19; Cardiovascular Diseases; Humans; Hypertension; Italy; SARS-CoV-2; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Antihypertensive Agents; Coronavirus Infections; Pandemics; Pneumonia Viral; Renin-Angiotensin SystemRenin-Angiotensin System0302 clinical medicinecardiovascular diseaseViralAngiotensin Receptor AntagonistsbiologyAngiotensin Receptor AntagonistAntihypertensive AgentItalyoutcomeAngiotensin Receptor BlockersCoronavirus InfectionsCardiology and Cardiovascular MedicineHumanmedicine.medical_specialtyhypertensionCoronavirus disease 2019 (COVID-19)Pneumonia ViralBetacoronavirusAngiotensin Receptor Antagonists03 medical and health sciencesPharmacotherapyRenin–angiotensin systemInternal MedicinemedicineHumansIntensive care medicinePandemicsAntihypertensive Agentsoutcomes.BetacoronaviruPandemicCoronavirus InfectionSARS-CoV-2business.industryOutbreakCOVID-19Angiotensin-Converting Enzyme InhibitorAngiotensin-converting enzymePneumoniacardiovascular diseases; COVID-19; hypertension; infection; outcomesinfectioncardiovascular diseases030104 developmental biologybiology.proteincardiovascular diseases; COVID-19; hypertension; infection; outcomes; betacoronavirus; cardiovascular diseases; humans; hypertension; Italy; angiotensin receptor antagonists; angiotensin-converting enzyme inhibitors; antihypertensive agents; coronavirus infections; pandemics; pneumonia viral; renin-angiotensin systembusiness030217 neurology & neurosurgery
researchProduct