Search results for "bifurcation"

showing 10 items of 204 documents

From deterministic cellular automata to coupled map lattices

2016

A general mathematical method is presented for the systematic construction of coupled map lattices (CMLs) out of deterministic cellular automata (CAs). The entire CA rule space is addressed by means of a universal map for CAs that we have recently derived and that is not dependent on any freely adjustable parameters. The CMLs thus constructed are termed real-valued deterministic cellular automata (RDCA) and encompass all deterministic CAs in rule space in the asymptotic limit $\kappa \to 0$ of a continuous parameter $\kappa$. Thus, RDCAs generalize CAs in such a way that they constitute CMLs when $\kappa$ is finite and nonvanishing. In the limit $\kappa \to \infty$ all RDCAs are shown to ex…

Statistics and ProbabilityGeneral Physics and AstronomyFOS: Physical sciencesPattern Formation and Solitons (nlin.PS)Space (mathematics)01 natural sciences010305 fluids & plasmasLinear stability analysis0103 physical sciencesLimit (mathematics)Statistical physics010306 general physicsMathematical PhysicsBifurcationPhysicsCellular Automata and Lattice Gases (nlin.CG)Quiescent stateStatistical and Nonlinear PhysicsNonlinear Sciences - Chaotic DynamicsNonlinear Sciences - Pattern Formation and SolitonsCellular automatonNonlinear Sciences - Adaptation and Self-Organizing SystemsHomogeneousModeling and SimulationContinuous parameterChaotic Dynamics (nlin.CD)Adaptation and Self-Organizing Systems (nlin.AO)Nonlinear Sciences - Cellular Automata and Lattice Gases
researchProduct

Dynamics of a map with a power-law tail

2008

We analyze a one-dimensional piecewise continuous discrete model proposed originally in studies on population ecology. The map is composed of a linear part and a power-law decreasing piece, and has three parameters. The system presents both regular and chaotic behavior. We study numerically and, in part, analytically different bifurcation structures. Particularly interesting is the description of the abrupt transition order-to-chaos mediated by an attractor made of an infinite number of limit cycles with only a finite number of different periods. It is shown that the power-law piece in the map is at the origin of this type of bifurcation. The system exhibits interior crises and crisis-induc…

Statistics and ProbabilityMathematical analysisChaoticFOS: Physical sciencesGeneral Physics and AstronomyFísicaStatistical and Nonlinear PhysicsNonlinear Sciences - Chaotic DynamicsPower lawlaw.inventionNonlinear Sciences::Chaotic DynamicslawModeling and SimulationIntermittencyAttractorPiecewiseLimit (mathematics)Chaotic Dynamics (nlin.CD)Finite setMathematical PhysicsBifurcationMathematics
researchProduct

Integrable Hamiltonian systems with swallowtails

2010

International audience; We consider two-degree-of-freedom integrable Hamiltonian systems with bifurcation diagrams containing swallowtail structures. The global properties of the action coordinates in such systems together with the parallel transport of the period lattice and corresponding quantum cells in the joint spectrum are described in detail. The relation to the concept of bidromy which was introduced in Sadovski´ı and Zhilinski´ı (2007 Ann. Phys. 322 164–200) is discussed.

Statistics and Probability[PHYS.PHYS.PHYS-CLASS-PH]Physics [physics]/Physics [physics]/Classical Physics [physics.class-ph]Integrable systemSINGULARITIESCoordinate systemGeneral Physics and Astronomy01 natural sciencesHamiltonian system[ PHYS.PHYS.PHYS-CLASS-PH ] Physics [physics]/Physics [physics]/Classical Physics [physics.class-ph]FRACTIONAL MONODROMY0103 physical sciences0101 mathematics010306 general physicsQuantumMathematical PhysicsBifurcationMathematicsMathematical physicsParallel transportSPHERICAL PENDULUMGEOMETRY010102 general mathematicsSpherical pendulumMathematical analysisStatistical and Nonlinear PhysicsRESONANCESACKER FAMILIESModeling and SimulationLIOUVILLEGravitational singularity
researchProduct

Pattern formation driven by cross-diffusion

2009

In this work we are interested in describing the mechanism of pattern formation for a reaction-diffusion system with nonlinear diffusion terms (which take into account the self and the cross-diffusion effects). The reaction terms are chosen of the Lotka-Volterra type in the competitive interaction case. The cross-diffusion is proved to be the key mechanism of pattern formation via a linear stability analysis. A weakly nonlinear multiple scales analysis is carried out to predict the amplitude and the form of the pattern close to the bifurcation threshold. In particular, the Stuart-Landau equation which rules the evolution of the amplitude of the most unstable mode is found. In the subcritica…

Subcritical bifurcation hysteresis 2-d weakly nonlinear analysis
researchProduct

Real-Life Outcomes of Coronary Bifurcation Stenting in Acute Myocardial Infarction (Zabrze–Opole Registry)

2021

Percutaneous coronary intervention (PCI) of bifurcation lesions is a technical challenge associated with high risk of adverse events, especially in primary PCI. The aim of the study is to analyze long-term outcomes after PCI for coronary bifurcation in acute myocardial infarction (AMI). The outcome was defined as the rate of major adverse cardiac event related to target lesion failure (MACE-TLF) (death-TLF, nonfatal myocardial infarction-TLF and target lesion revascularization (TLR)) and the rate of stent thrombosis (ST). From 306 patients enrolled to the registry, 113 were diagnosed with AMI. In the long term, AMI was not a risk factor for MACE-TLF. The risk of MACE-TLF was dependent on th…

Target lesionmedicine.medical_specialtymedicine.medical_treatmentacute myocardial infarctionCulpritArticlemedicine.arteryInternal medicinemedicineDiseases of the circulatory (Cardiovascular) systemPharmacology (medical)cardiovascular diseasesMyocardial infarctionGeneral Pharmacology Toxicology and PharmaceuticsRisk factoracute myocardial infarction; coronary bifurcation; percutaneous coronary intervention; target lesion failureAdverse effectcoronary bifurcationbusiness.industrypercutaneous coronary interventionPercutaneous coronary interventionmedicine.diseaseRC666-701Right coronary arteryConventional PCICardiologytarget lesion failurebusinessJournal of Cardiovascular Development and Disease
researchProduct

On Bifurcation Analysis of Implicitly Given Functionals in the Theory of Elastic Stability

2015

In this paper, we analyze the stability and bifurcation of elastic systems using a general scheme developed for problems with implicitly given functionals. An asymptotic property for the behaviour of the natural frequency curves in the small vicinity of each bifurcation point is obtained for the considered class of systems. Two examples are given. First is the stability analysis of an axially moving elastic panel, with no external applied tension, performing transverse vibrations. The second is the free vibration problem of a stationary compressed panel. The approach is applicable to a class of problems in mechanics, for example in elasticity, aeroelasticity and axially moving materials (su…

VibrationDiscrete mathematicsBifurcation theoryTranscritical bifurcationMathematical analysisNatural frequencyAeroelasticityBifurcation diagramAxial symmetryBifurcationMathematics
researchProduct

Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth

2015

We focus on the morphochemical reaction–diffusion model introduced in Bozzini et al. (2013) and carry out a nonlinear bifurcation analysis with the aim to characterize the shape and the amplitude of the patterns arising as the result of Turing instability of the physically relevant equilibrium. We perform a weakly nonlinear multiple scales analysis, and derive the normal form equations governing the amplitude of the patterns. These amplitude equations allow us to construct relevant solutions of the model equations and reveal the presence of multiple branches of stable solutions arising as the result of subcritical bifurcations. Hysteretic type phenomena are highlighted also through numerica…

WavefrontReaction–diffusionTuring instabilityMorphochemical electrodeposition Reaction–diffusion Pattern formation Turing instability Bifurcation analysisPattern formationComputational mathematicsMorphochemical electrodepositionNonlinear systemComputational MathematicsAmplitudeComputational Theory and MathematicsBifurcation analysisBifurcation analysiComputational Theory and MathematicModeling and SimulationReaction–diffusion systemPattern formationStatistical physicsReaction-diffusionFocus (optics)Envelope (mathematics)AlgorithmSettore MAT/07 - Fisica MatematicaMathematics
researchProduct

Bifurcations in the elementary Desboves family

2017

International audience; We give an example of a family of endomorphisms of $\mathbb{P}^2(\mathbb{C})$ whose Julia set depends continuously on the parameter and whose bifurcation locus has non-empty interior.

[ MATH ] Mathematics [math]Pure mathematicsEndomorphismMathematics - Complex VariablesApplied MathematicsGeneral Mathematics010102 general mathematicsDynamical Systems (math.DS)MSC: 32H50 37F4516. Peace & justice01 natural sciencesJulia setDynamicsRational mapsBifurcation locus0103 physical sciencesFOS: Mathematics32H50 37F45 37F50010307 mathematical physics0101 mathematics[MATH]Mathematics [math]Complex Variables (math.CV)Mathematics - Dynamical SystemsMathematics
researchProduct

INSTABILITY OF HAMILTONIAN SYSTEMS IN THE SENSE OF CHIRIKOV AND BIFURCATION IN A NON LINEAR EVOLUTION PROBLEM EMANATING FROM PHYSICS

2004

We prove the existence of a minimal geometrico-dynamical condition to create hyperbolicity in section in the vicinity of a transversal homoclinic partially hyperbolic torus in a near integrable Hamiltonian system with three degrees of freedom. We deduce in this context a generalization of the Easton's theorem of symbolic dynamics. Then we give the optimal estimation of the Arnold diffusion time along a transition chain in the initially hyperbolic Hamiltonian systems with three degrees of freedom with a surrounding chain of hyperbolic periodic orbits .In a second part, we describe geometrically a mechanism of diffusion studied by Chirikov in a near integrable Hamiltonian system with three de…

[ MATH ] Mathematics [math]dynamique symboliquehyperbolicitymodulational instabilityNavier Stokespartially hyperbolic tori[MATH] Mathematics [math]amplitude equationschevauchement de résonancescenter manifoldconvection mixte –hyperbolicitéoverlapping resonancessymbolic dynamicséquations d'amplitudesystèmes Hamiltoniensbifurcationinstabilité modulationnellevariété centraleHamiltonian systems[MATH]Mathematics [math]tores partiellement hyperboliquesmixed convection
researchProduct

Dynamic instability in absence of dominated splittings.

2006

We want to understand the dynamics in absence of dominated splittings. A dominated splitting is a weak form of hyperbolicity where the tangent bundle splits into invariant subbundles, each of them is more contracted or less expanded by the dynamics than the next one. We first answer an old question from Hirsch, Pugh and Shub, and show the existence of adapted metrics for dominated splittings.Mañé found on surfaces a $C^1$-generic dichotomy between hyperbolicity and Newhouse phenomenons (infinitely many sinks/sources). For that purpose, he showed that without a strong enough dominated splitting along one periodic orbit, a $C^1$-perturbation creates a sink or a source. We generalise that last…

[ MATH ] Mathematics [math]partially hyperbolichomoclinic classdécomposition dominéeadapted metricmétrique adaptée[MATH] Mathematics [math]homoclinic tangencychain-recurrent.dominated splittinghyperbolic dynamicsclasse homoclinebifurcationphénomène de Newhousepartiellement hyperboliqueNewhouse phenomenonrécurrent par chaines.[MATH]Mathematics [math]récurrent par chainestangence homoclinedynamique hyperbolique
researchProduct