Search results for "bilayer"

showing 10 items of 391 documents

Environment- and sequence-dependent modulation of the double-stranded to single-stranded conformational transition of gramicidin A in membranes.

1998

The role of the membrane lipid composition and the individual Trp residues in the conformational rearrangement of gramicidin A along the folding pathway to its channel conformation has been examined in phospholipid bilayers by means of previously described size-exclusion high-performance liquid chromatography HPLC-based strategy (Bano et al. (1991) Biochemistry 30, 886). It has been demonstrated that the chemical composition of the membrane influences the transition rate of the peptide rearrangement from double-stranded dimers to beta-helical monomers. The chemical modification of Trp residues, or its substitution by the more hydrophobic residues phenylalanine or naphthylalanine, stabilized…

Circular dichroismStereochemistryProtein ConformationDimerPhenylalanineEnterococcus faeciumLipid BilayersMolecular Sequence DataPeptideMicrobial Sensitivity TestsBiochemistrychemistry.chemical_compoundProtein structureAmino Acid SequencePeptide sequenceChromatography High Pressure Liquidchemistry.chemical_classificationChemistryCholestenesCircular DichroismGramicidinTryptophanFolding (chemistry)MembraneSpectrometry FluorescenceAmino Acid SubstitutionGramicidinFatty Acids UnsaturatedPhosphatidylcholinesDimerizationBiochemistry
researchProduct

Biosensor-based kinetic and thermodynamic characterization of opioids interaction with human μ-opioid receptor.

2019

Development of opioid analgesics with minimal side effects requires substantial knowledge on structure-kinetic and -thermodynamic relationship of opioid-receptor interactions. Here, combined kinetics and thermodynamics of opioid agonist binding to human μ-opioid receptor (h-μOR) was investigated using real-time label-free surface plasmon resonance (SPR)-based method. The N-terminal end truncated and C-terminal 6His-tagged h-μOR was constructed and expressed in E. coli. Receptor was purified, detergent-solubilized and characterized by circular dichroism. The uniform immobilization of h-μOR on Ni-NTA chips was achieved using hybrid capture-coupling approach followed by reconstitution in lipid…

Circular dichroismThermodynamic equilibriummedicine.drug_classEnthalpyReceptors Opioid muPharmaceutical Science02 engineering and technology(+)-NaloxoneBiosensing Techniques030226 pharmacology & pharmacy03 medical and health sciences0302 clinical medicineOpioid receptormedicineEscherichia coliHumansSurface plasmon resonanceLipid bilayerMorphineChemistryNaloxone021001 nanoscience & nanotechnologyAnalgesics OpioidKineticsOpioidBiophysicsThermodynamics0210 nano-technologymedicine.drugEuropean journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences
researchProduct

Probes for studying cholesterol binding and cell biology.

2011

Cholesterol is a multifunctional lipid in eukaryotic cells. It regulates the physical state of the phospholipid bilayer, is crucially involved in the formation of membrane microdomains, affects the activity of many membrane proteins, and is the precursor for steroid hormones and bile acids. Thus, cholesterol plays a profound role in the physiology and pathophysiology of eukaryotic cells. The cholesterol molecule has achieved evolutionary perfection to fulfill its different functions in membrane organization. Here, we review basic approaches to explore the interaction of cholesterol with proteins, with a particular focus on the high diversity of fluorescent and photoreactive cholesterol prob…

Clinical BiochemistryLipid BilayersBiologyBiochemistryCell membranechemistry.chemical_compoundEndocrinologyMembrane MicrodomainsmedicineAnimalsHumansLipid bilayerMolecular BiologyPhospholipidsG protein-coupled receptorFluorescent DyesPharmacologyCyclodextrinsBinding SitesCholesterolOrganic ChemistryCholesterol bindingCell MembraneMembrane ProteinsSterolSterol regulatory element-binding proteinCell biologymedicine.anatomical_structureCholesterolEukaryotic CellsMembrane proteinBiochemistrychemistryMolecular Probeslipids (amino acids peptides and proteins)Steroids
researchProduct

Magnetic anisotropy in Fe/U and Ni/U bilayers

2021

Magnetometry measurements of Fe/U and Ni/U bilayer systems reveal a non-monotonic dependence of the magnetic anisotropy for U thicknesses in the range 0 nm - 8 nm, with the Fe/U bilayers showing a more prominent effect as compared to Ni/U. The stronger response for Fe/U is ascribed to the stronger 3d-5f hybridization of Fe and U. This non-monotonic behaviour is thought to arise from quantum well states in the uranium overlayers. Estimating an oscillation period from the non-monotonic data, and comparing it to Density Functional Theory calculations, we find that wavevector matches to the experimental data can be made to regions of high spectral density in (010) and (100) cuts of the electron…

Condensed Matter - Materials ScienceMaterials scienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsMagnetometerOscillationBilayerMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesElectronic structurelaw.inventionMagnetic anisotropylawMesoscale and Nanoscale Physics (cond-mat.mes-hall)Wave vectorDensity functional theoryTexture (crystalline)Physical Review B
researchProduct

Flat-band superconductivity in periodically strained graphene: mean-field and Berezinskii–Kosterlitz–Thouless transition

2019

In the search of high-temperature superconductivity one option is to focus on increasing the density of electronic states. Here we study both the normal and $s$-wave superconducting state properties of periodically strained graphene, which exhibits approximate flat bands with a high density of states, with the flatness tunable by the strain profile. We generalize earlier results regarding a one-dimensional harmonic strain to arbitrary periodic strain fields, and further extend the results by calculating the superfluid weight and the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature $T_\text{BKT}$ to determine the true transition point. By numerically solving the self-consistency …

Condensed Matter::Quantum GasesSuperconductivityPhysicsLocal density of statesCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsCondensed Matter - SuperconductivityFOS: Physical sciences02 engineering and technologyBCS theory021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSuperconductivity (cond-mat.supr-con)Kosterlitz–Thouless transitionStrain engineeringTransition pointCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesDensity of statesGeneral Materials Science010306 general physics0210 nano-technologyBilayer grapheneJournal of Physics: Condensed Matter
researchProduct

Monte Carlo Study of Dense Monolayer and Bilayer Films on the (100) Plane of Face-Centered Cubic Crystals

1999

A Monte Carlo simulation method in the canonical and in the grand canonical ensembles is used to study the behavior and properties of dense monolayer and bilayer films formed on the (100) plane of model face-centered cubic crystals. Systems with different effects due to the periodicity of the gas−solid potential are considered, and the mechanism of melting in the first and the second adsorbed layer is discussed. It is demonstrated that the film structure is very sensitive to the gas−solid potential corrugation, as well as to the temperature and the surface coverage. In particular, it is shown that monolayer films formed on weakly corrugated surfaces exhibit the incommensurate (dense) phase …

Condensed matter physicsPlane (geometry)ChemistryBilayerTransition temperatureMonte Carlo methodSurfaces and InterfacesCubic crystal systemCondensed Matter PhysicsPhase (matter)MonolayerElectrochemistryGeneral Materials ScienceSpectroscopyPhase diagramLangmuir
researchProduct

Efficient, Cyanine Dye Based Bilayer Solar Cells

2012

Simple bilayer solar cells, using commercially available cationic cyanine dyes as donors and evaporated C60 layer as an acceptor are prepared. Cyanine dyes with absorption maxima of 578, 615 and 697 nm having either perchlorate or hexafluorophosphate counter-ions are evaluated. The perchlorate dye leads to cells with S-shape current-voltage curves; only the dyes with the hexafluorophosphate counter-ions lead to efficient solar cells. When the wide bandgap dyes are employed, S-shape current-voltage curves are obtained when the conductive polymer PEDOT:PSS is used as hole transport layer. Substitution of PEDOT:PSS with MoO3 leads to cells with more rectangular current–voltage curves and high …

Conductive polymerMaterials scienceRenewable Energy Sustainability and the EnvironmentOpen-circuit voltageBilayer02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry7. Clean energy01 natural sciencesAcceptor0104 chemical scienceslaw.inventionchemistry.chemical_compoundPEDOT:PSSchemistrylawHexafluorophosphateSolar cellGeneral Materials ScienceCyanine0210 nano-technologyAdvanced Energy Materials
researchProduct

Biochemical Applications of Solid Supported Membranes on Gold Surfaces: Quartz Crystal Microbalance and Impedance Analysis

2003

Since their inception in 1985 by Tamm and McConnell [1], solid supported lipid bilayers have been widely used as model systems for cellular membranes [2]. They have been applied in fundamental and applied studies of lipid assemblies on surfaces, to study the structure of membranes and membrane dynamics, lipidreceptor-interactions and electrochemical properties of membranes [3-5]. Several attempts have been made to apply solid supported membranes (SSM) in biosensor devices [6]. Planar lipid membranes can be formed on various surfaces, i.e. glass, silicon, mica or metal surfaces such as platinum or gold. Surface attachment of the lipids is typically achieved following two different strategies…

Conductive polymerMaterials scienceSiliconOxidechemistry.chemical_elementQuartz crystal microbalanceMetalchemistry.chemical_compoundMembranechemistryChemical engineeringvisual_artvisual_art.visual_art_mediumLipid bilayerBiosensor
researchProduct

Tuning Of Organic Heterojunction Conductivity By The Substituents' Electronic Effects In Phthalocyanines For Ambipolar Gas Sensors

2021

Abstract Exploiting organic heterojunction effects in electrical devices are an important strategy to improve the electrical conductivity, which can be utilized into improving the conductometric gas sensors performances. In this endeavor, the present article reports fabrication of organic heterostructures in a bilayer device configuration incorporating octa-substituted nickel phthalocyanines (NiPc) and radical lutetium bis-phthalocyanine (LuPc2) and investigates their sensing properties towards NH3 vapor. NiPc having hexyl sulfanyl, hexyl sulfonyl and p-carboxyphenoxy moieties are synthesized, which electronic effects are electron donating, accepting and moderate accepting, respectively, al…

Conductometric TransducerMaterials science02 engineering and technologyConductivity010402 general chemistryPhotochemistry01 natural scienceschemistry.chemical_compoundAmmoniaSulfanylMaterials ChemistryElectronic effect[CHIM]Chemical SciencesElectrical and Electronic EngineeringInstrumentationComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationAmbipolar diffusionBilayerMetals and AlloysPhthalocyanineHeterojunctionElectron acceptor021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMolecular materialschemistryHeterojunctionCyclic voltammetryGas sensor0210 nano-technology
researchProduct

Staphylococcal α-toxin: the role of the N-terminus in formation of the heptameric pore — a fluorescence study1This work contains parts of the M.D. th…

1997

Staphylococcus aureus alpha-toxin forms heptameric pores on eukaryotic cell membranes. Assembly of the heptamer precedes formation of the transmembrane pore. The latter event depends on a conformational change that drives a centrally located stretch of 15 amino acid residues into the lipid bilayer. A second region of the molecule that has been implicated in the pre-pore to pore transition is the far N-terminus. Here, we used fluorescently labeled single cysteine replacement mutants to analyze the functional role of the far N-terminus of alpha-toxin. Pyrene attached to mutants S3C, I5C and 17C forms excimers within the toxin pore complex. This indicates that the distance of adjacent N-termin…

Conformational changePore complexStereochemistryMembrane lipidsBiophysicsCell BiologyN-terminusα-ToxinBiochemistryTransmembrane proteinchemistry.chemical_compoundProtein structureMembranechemistryHeptameric poreBiophysicsPyreneLipid bilayer(Staphylococcus aureus)Biochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct