Search results for "binaries"

showing 10 items of 191 documents

Spectroscopic Observations of the Delta Scorpii Binary during Its Recent Periastron Passage

2001

The bright star delta Sco has been considered a typical B0-type object for many years. Spectra of the star published prior to 1990 showed no evidence of emission, but only of short-term line profile variations attributed to nonradial pulsations. Speckle interferometric observations show that delta Sco is a binary system with a highly-eccentric orbit and a period of 10.6 years. Weak emission in the H-alpha line was detected in its spectrum for the first time during a periastron passage in 1990. Shortly before the next periastron passage in the summer of 2000, the binary entered a strong H-alpha emission and enhanced mass loss phase. We monitored the spectroscopic development of the Be outbur…

Bright starAstrophysics::High Energy Astrophysical PhenomenaBinary numberFOS: Physical sciencesOrbital eccentricityAstrophysicsAstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA01 natural sciencesSpectral lineSpectroscopic Technich0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsBinary systemSpectroscopy010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsLine (formation)Physics010308 nuclear & particles physicsBinariesAstrophysics (astro-ph)Astronomy and Astrophysics:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Emission-line ; Binaries ; Sco ; Spectroscopic TechnichOrbitScoSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogoniaEmission-line:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

Long-term optical and X-ray variability of the Be/X-ray binary H 1145-619: Discovery of an ongoing retrograde density wave

2017

Multiwavelength monitoring of Be/X-ray binaries is crucial to understand the mechanisms producing their outbursts. H 1145-619 is one of these systems, which has recently displayed X-ray activity. We investigate the correlation between the optical emission and the X-ray activity to predict the occurrence of new X-ray outbursts from the inferred state of the circumstellar disc. We have performed a multiwavelength study of H 1145-619 from 1973 to 2017 and present here a global analysis of its variability over the last 40 years. We have used optical spectra from the SAAO, SMARTS and SALT telescopes and optical photometry from INTEGRAL/OMC and ASAS. We also used X-ray observations from INTEGRAL/…

BrightnessBe starAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectX-ray binarystars: emission-lineFOS: Physical sciencesAstrophysics01 natural sciencesSpectral lineDensity wave theoryPhotometry (optics)X-rays: binariesstars: neutrontechniques: photometric0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsBeAstronomy and AstrophysicsLight curvestars: emission-line BeAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceSkyAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenatechniques: spectroscopicAstronomy & Astrophysics
researchProduct

The large-scale magnetic field of the eccentric pre-main-sequence binary system V1878 Ori

2020

We report time-resolved, high-resolution optical spectropolarimetric observations of the young double-lined spectroscopic binary V1878 Ori. Our observations were collected with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope through the BinaMIcS large programme. V1878 Ori A and B are partially convective intermediate mass weak-line T Tauri stars on an eccentric and asynchronous orbit. We also acquired X-ray observations at periastron and outside periastron. Using the least-squares deconvolution technique (LSD) to combine information from many spectral lines, we clearly detected circular polarization signals in both components throughout the orbit. We refined the orbita…

BrightnessFOS: Physical sciencesAstrophysicsspectroscopic [binaries]01 natural sciencesSpectral lineSettore FIS/05 - Astronomia E AstrofisicaAstronomi astrofysik och kosmologi0103 physical sciencespolarimetric [techniques]Astronomy Astrophysics and CosmologyAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Circular polarizationPhysics010308 nuclear & particles physics[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]stars: magnetic fieldAstronomy and AstrophysicsZeeman–Doppler imagingMagnetic fieldtechniques: polarimetricT Tauri starStarsOrbitindividual: V1878 Ori [stars]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary Sciencemagnetic field [stars]spectroscopic [techniques]Astrophysics::Earth and Planetary Astrophysicsbinaries: spectroscopicstars: individual: V1878 Oritechniques: spectroscopic
researchProduct

A brown dwarf orbiting an M-dwarf:MOA 2009-BLG-411L

2012

Context. Caustic crossing is the clearest signature of binary lenses in microlensing. In the present context, this signature is diluted by the large source star but a detailed analysis has allowed the companion signal to be extracted.Aims. MOA 2009-BLG-411 was detected on August 5, 2009 by the MOA-Collaboration. Alerted as a high-magnification event, it was sensitive to planets. Suspected anomalies in the light curve were not confirmed by a real-time model, but further analysis revealed small deviations from a single lens extended source fit.Methods. Thanks to observations by all the collaborations, this event was well monitored. We first decided to characterize the source star properties b…

Brown dwarfContext (language use)Astrophysicsgravitational lensing: microAstrophysics::Cosmology and Extragalactic AstrophysicsGravitational microlensing01 natural sciencesSettore FIS/05 - Astronomia e AstrofisicaPlanet0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsstars: individual: MOA 2009-BLG-411L010308 nuclear & particles physicsAstronomyMOA 2009-BLG-411L; gravitational lensing; starsAstronomy and AstrophysicsRadiusLight curveGalaxyGravitational lensbinaries: generalSpace and Planetary ScienceAstrophysics::Earth and Planetary Astrophysicsbinaries: general; gravitational lensing: micro; stars: individual: MOA 2009-BLG-411L
researchProduct

GW170817: Measurements of Neutron Star Radii and Equation of State

2018

On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation…

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftenneutron star: binaryAstronomyGeneral Physics and AstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyGRAVITATIONAL-WAVESGW170817BINARIESddc:550DENSELIGODENSE MATTEREquation of State010303 astronomy & astrophysicsQCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysicsNeutron Star RadiusPhysicsGravitational effectsEquations of stateParametrizationsElectromagnetic observationsGravitational-wave signals3. Good healthQUADRUPOLE-MOMENTSMacroscopic propertiesPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sourceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaEquations of state of nuclear matterGravitational wavesaturation: densityBinary neutron starsNUCLEON MATTEREquations of state of nuclear matter; Gravitational wave sources; Gravitational waves; Nuclear matter in neutron starsGeneral relativitygr-qcAstrophysics::High Energy Astrophysical PhenomenaGW170817 Neutron Star Radius Equation of StatePhysics Multidisciplinaryneutron star: spinFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesgravitational radiation: direct detectionGravitation and AstrophysicsNuclear matter in neutron starsGravitational waveselectromagnetic field: productionPhysics and Astronomy (all)Pulsargalaxy: binary0103 physical sciencesddc:530NeutronMASSESSTFCequation of state: parametrizationAstrophysics::Galaxy AstrophysicsNeutronsExtreme conditionsGravitational wave sourcesEquation of stateScience & TechnologyNeutron Star Interior Composition Explorer010308 nuclear & particles physicsGravitational wavegravitational radiationRCUKFlocculationSaturation densityUNIVERSAL RELATIONSStarsLIGOgravitational radiation detectorNeutron starStarsVIRGOPhysics and Astronomygravitational radiation: emissionneutron star: binary: coalescenceDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]MATTER
researchProduct

Young, active radio stars in the AB Doradus moving group

2017

Context. Precise determination of stellar masses is necessary to test the validity of pre-main-sequence (PMS) stellar evolutionary models, whose predictions are in disagreement with measurements for masses below 1.2 M. To improve such a test, and based on our previous studies, we selected the AB Doradus moving group (AB Dor-MG) as the best-suited association on which to apply radio-based high-precision astrometric techniques to study binary systems. Aims. We seek to determine precise estimates of the masses of a set of stars belonging to the AB Dor-MG using radio and infrared observations. Methods. We observed in phase-reference mode with the Very Large Array (VLA) at 5 GHz and with the Eur…

European VLBI NetworkInfraredFOS: Physical sciencesContext (language use)Astrophysics01 natural sciencesRadio continuum: generalObservatorypre-main sequence [Stars]0103 physical sciencesBinaries: general010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)PhysicsOrbital elementsgeneral [Binaries]010308 nuclear & particles physicsgeneral [Radio continuum]Astronomy and AstrophysicsAstrometryCoronaStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceStars: pre-main sequenceAB Doradus moving group
researchProduct

The Large Observatory for X-ray Timing (LOFT)

2012

High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultra-dense matter and to black hole masses and spins. A 10 m^2-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M…

Event horizonX-ray timingMission7. Clean energy01 natural sciencesneutron starsT175 Industrial research. Research and developmentBINARIESSettore FIS/05 - Astronomia E AstrofisicaALICESILICON DRIFT DETECTORObservatoryEQUATIONneutron star010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsMissions X-ray timing compact objects black holes neutron starscompact objectsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaPROPORTIONAL COUNTER[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Active galactic nucleusCosmic VisionX-ray astronomy; high time variabilityAstrophysics::High Energy Astrophysical Phenomenablack holes; compact objects; Missions; neutron stars; X-ray timing;FOS: Physical sciencesMissionsX-ray astronomy0103 physical sciencesOSCILLATIONSInstrumentation and Methods for Astrophysics (astro-ph.IM)Supermassive black holehigh time variability010308 nuclear & particles physicsAstronomyCONSTRAINTSAstronomy and Astrophysicsblack holesGalaxyBlack holeNeutron starSpace and Planetary ScienceQB460-466 AstrophysicsDISCOVERYBLACK-HOLESUPERAGILE
researchProduct

The puzzling case of the accreting millisecond X-ray pulsar IGR J00291+5934: flaring optical emission during quiescence

2017

We present an optical (gri) study during quiescence of the accreting millisecond X-ray pulsar IGR J00291+5934 performed with the 10.4m Gran Telescopio Canarias (GTC) in August 2014. Despite the source being in quiescence at the time of our observations, it showed a strong optical flaring activity, more pronounced at higher frequencies (i.e. the g band). Once the flares were subtracted, we tentatively recovered a sinusoidal modulation at the system orbital period in all bands, even if a significant phase shift with respect to an irradiated star, typical of accreting millisecond X-ray pulsars is detected. We conclude that the observed flaring could be a manifestation of the presence of an acc…

Gran Telescopio CanariasAstrophysics::High Energy Astrophysical Phenomenaneutron X-rays: binaries accretion accretion disks [stars]FOS: Physical sciencesAstrophysics01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaPulsarAccretion discstars: neutron X-rays: binaries accretion accretion disks0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMillisecond010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsLight curveOrbital period3. Good healthAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceOptical emission spectroscopyAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaX-ray pulsar
researchProduct

On the peculiar long-term orbital evolution of the eclipsing accreting millisecond X-ray pulsar SWIFT J1749.4-2807

2022

We present the pulsar timing analysis of the accreting millisecond X-ray pulsar SWIFT J1749.4-2807 monitored by NICER and XMM-Newton during its latest outburst after almost eleven years of quiescence. From the coherent timing analysis of the pulse profiles, we updated the orbital ephemerides of the system. Large phase jumps of the fundamental frequency phase of the signal are visible during the outburst, consistent with what was observed during the previous outburst. Moreover, we report on the marginally significant evidence for non-zero eccentricity ($e\simeq 4\times 10^{-5}$) obtained independently from the analysis of both the 2021 and 2010 outbursts and we discuss possible compatible sc…

High Energy Astrophysical Phenomena (astro-ph.HE)Accretiongeneral [Binaries]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesneutron [Stars]Astronomy and Astrophysicsstars: neutronX-rays: binariesSettore FIS/05 - Astronomia E Astrofisicabinaries: generalSpace and Planetary Scienceaccretion accretion discsbinaries [X-rays][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Accretion discs
researchProduct

Outflows and spectral evolution in the eclipsing AMXP SWIFT J1749.4–2807 with NICER, XMM-Newton, and NuSTAR

2022

The neutron star low-mass X-ray binary SWIFT J1749.4–2807 is the only known eclipsing accreting millisecond X-ray pulsar. In this manuscript, we perform a spectral characterization of the system throughout its 2021, 2-week-long outburst, analysing 11 NICER observations and quasi-simultaneous XMM-Newton and NuSTAR single observations at the outburst peak. The broad-band spectrum is well-modelled with a blackbody component with a temperature of ∼0.6 keV, most likely consistent with a hotspot on the neutron star surface, and a Comptonization spectrum with power-law index Γ ∼ 1.9, arising from a hot corona at ∼12 keV. No direct emission from the disc was found, possibly due to it being too cool…

High Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsX-rays: individuals: Swift J1749.4-2807accretion discsStars: neutronX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaaccretionAccretion accretion discs[SDU]Sciences of the Universe [physics]Space and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaMonthly Notices of the Royal Astronomical Society
researchProduct