Search results for "binaries"

showing 10 items of 191 documents

Suzaku broad-band spectrum of 4U 1705-44: probing the reflection component in the hard state

2015

Iron emission lines at 6.4-6.97 keV, identified with Kalpha radiative transitions, are among the strongest discrete features in the X-ray band. These are one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disk around a compact object. In this paper we present a recent Suzaku observation, 100-ks effective exposure, of the atoll source and X-ray burster 4U 1705-44, where we clearly detect signatures of a reflection component which is distorted by the high-velocity motion in the accretion disk. The reflection component consists of a broad iron line at about 6.4 keV and a Compton bump at high X-ray energies, around 20 keV. All these feat…

High Energy Astrophysical Phenomena (astro-ph.HE)Physicsline: formation line: identification stars: individual: 4U 1705-44 stars: neutron X-rays: binaries X-rays: generalAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBroad bandAstronomyAstronomy and AstrophysicsSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Scienceformation line: identification stars: individual: 4U 1705-44 stars: neutron X-rays: binaries X-rays: general [line]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaHumanitiesAstrophysics::Galaxy Astrophysics
researchProduct

Searching for pulsed emission from XTE J0929-314 at high radio frequencies

2009

The aim of this work is to search for radio signals in the quiescent phase of accreting millisecond X-ray pulsars, in this way giving an ultimate proof of the recycling model, thereby unambiguously establishing that accreting millisecond X-ray pulsars are the progenitors of radio millisecond pulsars. To overcome the possible free-free absorption caused by matter surrounding accreting millisecond X-ray pulsars in their quiescence phase, we performed the observations at high frequencies. Making use of particularly precise orbital and spin parameters obtained from X-ray observations, we carried out a deep search for radio-pulsed emission from the accreting millisecond X-ray pulsar XTE J0929-31…

High Energy Astrophysical Phenomena (astro-ph.HE)Physicspulsars: general methods: data analysis methods: observational X-rays: binaries stars: neutronMillisecondAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLuminosityInterstellar mediumNeutron starSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary ScienceMillisecond pulsarAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy AstrophysicsX-ray pulsar
researchProduct

On Low Mass X-ray Binaries and Millisecond Pulsar

2013

The detection, in 1998, of the first Accreting Millisecond Pulsar, started an exciting season of continuing discoveries in the fashinating field of compact binary systems harbouring a neutron star. Indeed, in these last three lustres, thanks to the extraordinary performances of astronomical detectors, on ground as well as on board of satellites, mainly in the Radio, Optical, X-ray, and Gamma-ray bands, astrophysicists had the opportunity to thoroughly investigate the so-called Recycling Scenario: the evolutionary path leading to the formation of a Millisecond Radio Pulsar. The most intriguing phase is certainly the spin-up stage during which, because of the accretion of matter and angular m…

High Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E AstrofisicaAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesStars: neutron Stars: magnetic fields Pulsars: general X-rays: binaries X-rays: pulsarsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The pulse profile and spin evolution of the accreting pulsar in Terzan 5, IGR J17480-2446, during its 2010 outburst

2012

(abridged) We analyse the spectral and pulse properties of the 11 Hz transient accreting pulsar, IGR J17480-2446, in the globular cluster Terzan 5, considering all the available RXTE, Swift and INTEGRAL observations performed between October and November, 2010. By measuring the pulse phase evolution we conclude that the NS spun up at an average rate of =1.48(2)E-12 Hz/s, compatible with the accretion of the Keplerian angular momentum of matter at the inner disc boundary. Similar to other accreting pulsars, the stability of the pulse phases determined by using the second harmonic component is higher than that of the phases based on the fundamental frequency. Under the assumption that the sec…

High Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E AstrofisicaAstrophysics::High Energy Astrophysical Phenomenaneutron pulsars: individual: IGR J17480-2446 X-rays: binaries [accretion accretion discs stars]FOS: Physical sciencesAstrophysics::Solar and Stellar Astrophysicsaccretion accretion discs stars: neutron pulsars: individual: IGR J17480-2446 X-rays: binariesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

The X-ray spectrum of the newly discovered accreting millisecond pulsar IGR J17511-3057

2010

We report on an XMM-Newton observation of the accreting millisecond pulsar, IGR J17511-3057. Pulsations at 244.8339512(1) Hz are observed with an RMS pulsed fraction of 14.4(3)%. A precise solution for the P_orb=12487.51(2)s binary system is derived. The measured mass function indicates a main sequence companion with a mass between 0.15 and 0.44 Msun. The XMM-Newton spectrum of the source can be modelled by at least three components, multicoloured disc emission, thermal emission from the NS surface and thermal Comptonization emission. Spectral fit of the XMM-Newton data and of the RXTE data, taken in a simultaneous temporal window, constrain the Comptonization parameters: the electron tempe…

High Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E Astrofisicastars neutron X-rays binaries X-rays individual IGR J17511-3057Astrophysics::High Energy Astrophysical PhenomenaAstrophysics::Solar and Stellar AstrophysicsFOS: Physical sciencesAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

Unveiling the disc structure in ultraluminous X-ray source NGC 55 ULX-1

2022

Ultraluminous X-ray sources (ULXs) are the most extreme among X-ray binaries in which the compact object, a neutron star or a black hole, accretes matter from the companion star, and exceeds a luminosity of 1039 ergs−1 in the X-ray energy band alone. Despite two decades of studies, it is still not clear whether ULX spectral transitions are due to stochastic variability in the wind or variations in the accretion rate or in the source geometry. The compact object is also unknown for most ULXs. In order to place constraints on to such scenarios and on the structure of the accretion disc, we studied the temporal evolution of the spectral components of the variable source NGC 55 ULX-1. Using rec…

High Energy Astrophysical Phenomena (astro-ph.HE)X-rays: binariesAccretionSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Scienceaccretion discFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaX-rays: binarieX-rays: individual: NGC 55 ULX-1Accretion discs
researchProduct

Broadband spectral analysis of MXB 1659-298 in its soft and hard state

2019

The X-ray transient eclipsing source MXB 1659-298 went in outburst in 1999 and 2015, respectively, during which it was observed by XMM-Newton, NuSTAR and Swift. Using these observations we studied the broadband spectrum of the source to constrain the continuum components and to verify the presence of a reflection component. We analysed the soft and hard state of the source, finding that the soft state can be modelled with a thermal component associated with the inner accretion disc plus a Comptonised component. A smeared reflection component and the presence of an ionised absorber are also requested in the best-fit model. On the other hand, the direct continuum emission in the hard state ca…

High Energy Astrophysical Phenomena (astro-ph.HE)X-rays: binariesstars: individual (MXB 1659-298)stars: neutronaccretionaccretion disksAstrophysics::High Energy Astrophysical PhenomenaAccretion Accretion disks Stars: individual (MXB 1659-298) Stars: neutron X-rays: binariesFOS: Physical sciences[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical Phenomena
researchProduct

MAXI J1957+032: a new accreting millisecond X-ray pulsar in an ultra-compact binary

2022

The detection of coherent X-ray pulsations at ~314 Hz (3.2 ms) classifies MAXI J1957+032 as a fast-rotating, accreting neutron star. We present the temporal and spectral analysis performed using NICER observations collected during the latest outburst of the source. Doppler modulation of the X-ray pulsation revealed the ultra-compact nature of the binary system characterised by an orbital period of ~1 hour and a projected semi-major axis of 14 lt-ms. The neutron star binary mass function suggests a minimum donor mass of 1.7e-2 Msun, assuming a neutron star mass of 1.4 Msun and a binary inclination angle lower than 60 degrees. This assumption is supported by the lack of eclipses or dips in th…

High Energy Astrophysical Phenomena (astro-ph.HE)general–stars:neutron [Binaries]FOS: Physical sciencesAstronomy and Astrophysicsaccretion discsbinaries:generalX-rays:binariesSettore FIS/05 - Astronomia E AstrofisicaaccretionSpace and Planetary Sciencebinaries [X-rays]stars:neutronAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)accretion disks [Accretion]
researchProduct

NuSTARandXMM–Newtonbroad-band spectrum of SAX J1808.4–3658 during its latest outburst in 2015

2018

The first discovered accreting millisecond pulsar, SAX J1808.4-3658, went into X-ray outburst in April 2015. We triggered a 100 ks XMM-Newton ToO, taken at the peak of the outburst, and a 55 ks NuSTAR ToO, performed four days apart. We report here the results of a detailed spectral analysis of both the XMM-Newton and NuSTAR spectra. While the XMM-Newton spectrum appears much softer than in previous observations, the NuSTAR spectrum confirms the results obtained with XMM-Newton during the 2008 outburst. We find clear evidence of a broad iron line that we interpret as produced by reflection from the inner accretion disk. For the first time, we use a self-consistent reflection model to fit the…

High Energy Astrophysical Phenomena (astro-ph.HE)line: formation line: identification stars: individual: SAX J1808.4-3658 stars: magnetic fields stars: neutron X-rays: binaries X-rays: generalPhysics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBroad bandAstronomy and AstrophysicsAstrophysics01 natural sciencesSpectral lineRadial velocityNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceMillisecond pulsarInclination angle0103 physical sciencesSpectral analysisAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsLine (formation)Monthly Notices of the Royal Astronomical Society
researchProduct

Long-term X-ray variability of the microquasar system LS 5039/RX J1826.2−1450

2003

We report on the results of the spectral and timing analysis of a BeppoSAX observation of the microquasar system LS 5039/RX J1826.2-1450. The source was found in a low-flux state with Fx(1-10 keV)= 4.7 x 10^{-12} erg cm^{-2} s^{-1}, which represents almost one order of magnitude lower than a previous RXTE observation 2.5 years before. The 0.1--10 keV spectrum is described by an absorbed power-law continuum with photon-number spectral index Gamma=1.8+-0.2 and hydrogen column density of NH=1.0^{+0.4}_{-0.3} x 10^{22} cm^{-2}. According to the orbital parameters of the system the BeppoSAX observation covers the time of an X-ray eclipse should one occur. However, the 1.6-10 keV light curve does…

HydrogenVariable starschemistry.chemical_elementFOS: Physical sciencesAstrophysicsCompact starAstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICAAccretion rateRadio astronomyQuasarsQuàsarsEstels binaris de raigs XOrbital elementsPhysicsSpectral indexRX J1826.2−1450Astrophysics (astro-ph)X-rayIndividual Star ; LS 5039 ; RX J1826.2−1450 ; 3EG J1824−1514 – X-rays ; Variable stars ;; General–radio continuumAstronomy and AstrophysicsIndividual StarLight curveGeneral–radio continuum:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]StarsEstelsX-ray binarieschemistrySpace and Planetary ScienceRadioastronomiaLS 50393EG J1824−1514 – X-raysUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogoniaOrder of magnitude:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct