Search results for "biodegradation"

showing 10 items of 317 documents

Environmental metabarcoding reveals contrasting microbial communities at two poplar phytomanagement sites

2016

The aim of the present study is to deepen the current understanding of the microbial communities at two poplar phytomanagement sites to reveal the environmental factors that drive the abundance, diversity and composition of microbial communities. A soil analysis revealed that the two soils displayed contrasting physico-chemical characteristics, with significant lower pH and higher Cd, Zn and Mn CaCl2-extractable fractions at Leforest site, compared with Pierrelaye site. The fungal and bacterial community profiles in the poplar roots and soils were assessed through Illumina MiSeq sequencing. Diversity indices and β-diversity measures illustrated that the root microbial communities were well …

0301 basic medicineEnvironmental EngineeringSoil test030106 microbiologyBiologyActinobacteria[ SDV.EE ] Life Sciences [q-bio]/Ecology environment03 medical and health sciencesDiversity indexMycorrhizaeBotanyEnvironmental ChemistryDominance (ecology)DNA Barcoding TaxonomicWaste Management and DisposalSoil MicrobiologyComputingMilieux_MISCELLANEOUS[SDV.EE]Life Sciences [q-bio]/Ecology environment2. Zero hungerAscomycotaBacteriaEcologyMicrobiotaAlphaproteobacteriaFungi15. Life on landbiology.organism_classificationPollutionWaste Disposal Facilities030104 developmental biologyBiodegradation EnvironmentalPopulusSoil waterFranceAcidobacteria
researchProduct

Kinetics of vinyl acetate biodegradation by Pseudomonas fluorescens PCM 2123

2018

Abstract The microbial degradation of vinyl acetate (VA) by Pseudomonas fluorescens PCM 2123 strain was studied in both batch and continuous modes. The purpose of the experiments was to determine the kinetic model of the cell growth and biodegradation rate of vinyl acetate (VA), which was the sole carbon and energy source for tested microorganisms. The experiments, carried out in a batch reactor for several initial concentrations of growth substrate in the liquid phase ranging from 18.6 to 373 gsubstrate·m−3 (gs·m−3) made it possible to choose the kinetic model and to estimate its constants. The Haldane inhibitory model with the values of constants: μm = 0.1202 h−1, KS = 17.195 gs·m−3, Ki =…

0301 basic medicineEnvironmental Engineeringbiology030106 microbiologyKineticsPseudomonasPseudomonas fluorescens010501 environmental sciencesBiodegradationbiology.organism_classification01 natural sciencesbatch and continuous cultures03 medical and health scienceschemistry.chemical_compoundchemistrykineticsPseudomonasVinyl acetateBioreactorvinyl acetateEnvironmental ChemistryMicrobial biodegradation0105 earth and related environmental sciencesNuclear chemistryvinyl acetate; Pseudomonas; kinetics; batch and continuous cultures
researchProduct

Metabolic and process engineering for biodesulfurization in Gram-negative bacteria

2017

32 p.-2 fig.-1 tab.

0301 basic medicineFossil FuelsGram-negative bacteriaScale-up030106 microbiologychemistry.chemical_elementBioengineeringThiophenesBiologyApplied Microbiology and BiotechnologyMetabolic engineering03 medical and health scienceschemistry.chemical_compoundPseudomonasOperonProcess engineering2. Zero hungerSulfur Compoundsbusiness.industryPseudomonasGeneral Medicinebiology.organism_classificationSulfurEnvironmentally friendly6. Clean waterKineticsBiodesulfurizationBiodegradation EnvironmentalchemistryDibenzothiopheneGram-negative bacteriaGenetic engineeringbusinessOrganosulfur compoundsMetabolic engineeringBacteriaMetabolic Networks and PathwaysDibenzothiopheneBiotechnology
researchProduct

Effects of alternative electron acceptors on the activity and community structure of methane-producing and consuming microbes in the sediments of two…

2017

The role of anaerobic CH4 oxidation in controlling lake sediment CH4 emissions remains unclear. Therefore, we tested how relevant EAs (SO42−, NO3−, Fe3+, Mn4+, O2) affect CH4 production and oxidation in the sediments of two shallow boreal lakes. The changes induced to microbial communities by the addition of Fe3+ and Mn4+ were studied using next-generation sequencing targeting the 16S rRNA and methyl-coenzyme M reductase (mcrA) genes and mcrA transcripts. Putative anaerobic CH4-oxidizing archaea (ANME-2D) and bacteria (NC 10) were scarce (up to 3.4% and 0.5% of archaeal and bacterial 16S rRNA genes, respectively), likely due to the low environmental stability associated with shallow depths.…

0301 basic medicineGeologic SedimentsMicroorganism116 Chemical sciencessedimentitApplied Microbiology and BiotechnologyRNA Ribosomal 16SMagnesiummikrobitoksidantitchemistry.chemical_classificationoxidantsEcologybiologyEcologymethane oxidationsedimentshapettuminenmethanogenesismcrAEnvironmental chemistrymicrobesOxidoreductasesMethaneOxidation-ReductionoxidationMethanogenesisIronta1172030106 microbiologyElectronsMethanobacteriajärvetmetaaniMicrobiology03 medical and health sciencesOrganic matter16S rRNAMicrobial biodegradationlakeBacteriata1183Carbon Dioxidebiology.organism_classificationArchaeaLakessedimentchemistry13. Climate actionAnaerobic oxidation of methaneBacteriaArchaeaFEMS Microbiology Ecology
researchProduct

Microbial communities of polluted sub-surface marine sediments

2018

Abstract Microbial communities of coastal marine sediment play a key role in degradation of petroleum contaminants. Here the bacterial and archaeal communities of sub-surface sediments (5–10 cm) of the chronically polluted Priolo Bay (eastern coast of Sicily, Italy), contaminated mainly by n-alkanes and biodegraded/weathered oils, were characterized by cultural and molecular approaches. 16S-PCR-DGGE analysis at six stations, revealed that bacterial communities are highly divergent and display lower phylogenetic diversity than the surface sediment; sub-surface communities respond to oil supplementation in microcosms with a significant reduction in biodiversity and a shift in composition; the…

0301 basic medicineGeologic SedimentsSub-surface marine sedimentMicrobial communitiealkB geneMicrobial ConsortiaBiodiversity010501 environmental sciencesAquatic ScienceSettore BIO/19 - Microbiologia GeneraleOceanography01 natural sciencesUnresolved complex mixtures (UCM)Clostridia03 medical and health sciencesRNA Ribosomal 16SMediterranean SeaPetroleum PollutionSicilyPhylogeny0105 earth and related environmental sciencesArcobacterBacteriabiologyDenaturing Gradient Gel ElectrophoresisSedimentBiodiversitySub-surface marine sediments; Microbial communities; alkB genes; Unresolved complex mixtures (UCM); Mediterranean Sea; Biodegradation; Arcobacterbiology.organism_classificationArchaeaPollutionHydrocarbonsPhylogenetic diversityBiodegradation EnvironmentalPetroleum030104 developmental biologyEnvironmental chemistryBiodegradationEnvironmental scienceProteobacteriaMicrocosmBayWater Pollutants ChemicalArchaeaMarine Pollution Bulletin
researchProduct

Analytical insight into degradation processes of aminopolyphosphonates as potential factors that induce cyanobacterial blooms

2017

Aminopolyphosphonates (AAPs) are commonly used industrial complexones of metal ions, which upon the action of biotic and abiotic factors undergo a breakdown and release their substructures. Despite the low toxicity of AAPs towards vertebrates, products of their transformations, especially those that contain phosphorus and nitrogen, can affect algal communities. To verify whether such chemical entities are present in water ecosystems, much effort has been made in developing fast, inexpensive, and reliable methods for analyzing phosphonates. However, unfortunately, the methods described thus far require time-consuming sample pretreatment and offer relatively high values of the limit of detect…

0301 basic medicineHealth Toxicology and MutagenesisMetal ions in aqueous solutionOrganophosphonatesFresh Water010501 environmental sciencesCyanobacteria01 natural sciencesChloride03 medical and health scienceschemistry.chemical_compoundSpecies SpecificitymedicineEnvironmental ChemistryOrganic chemistryDerivatization0105 earth and related environmental sciencesCyanobacterial biodegradationPollutant transformationGeneral MedicineEutrophicationPollutionDTPMPPhosphonateDecompositionAminopolyphosphonates030104 developmental biologychemistryWater pollutionGlycineOrganophosphonatesAnalytical determinationHPLCWater Pollutants Chemicalmedicine.drugResearch ArticleEnvironmental Science and Pollution Research International
researchProduct

Understanding the performance of an AnMBR treating urban wastewater and food waste via model simulation and characterization of the microbial populat…

2018

[EN] An anaerobic membrane bioreactor (AnMBR) pilot plant treating kitchen food waste (FW) jointly with urban wastewater was run for 536 days. Different operational conditions were tested varying the sludge retention time (SRT), the hydraulic retention time (HRT) and the penetration factor (PF) of food waste disposers. COD removal efficiency exceeded 90% in all tested conditions. The joint treatment resulted in an almost 3-fold increase in methane production (at 70 days of SRT, 24 h HRT and 80% PF) in comparison with the treatment of urban wastewater only. Mathematical model simulations and Illumina technology were used to obtain in-depth information of this outstanding process performance.…

0301 basic medicineHydraulic retention timePopulationBioengineering010501 environmental sciences01 natural sciencesApplied Microbiology and BiotechnologyBiochemistry03 medical and health scienceseducationTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesResource recoveryeducation.field_of_studyFood wasteResource recoveryBiodegradationPulp and paper industryFood waste030104 developmental biologyPilot plantAnMBRWastewaterEnvironmental scienceFermentationSimulation
researchProduct

New waves underneath the purple strain.

2016

Summary Successful merging of chemical and biotechnological operations is essential to achieve cost‐efficient industrialization of bio‐based processes. The demonstration of the use of syngas, derived from microwave assisted pyrolysis of municipal solid waste, for the improved growth and poly‐3‐hydroxybutyrate production in Rhodospirillium rubrum, stands out as an example of the synergistic contribution of chemical engineering and applied microbiology to sustainable biomaterial manufacturing, paving the way to similar applications for other syngas derived bioproducts.

0301 basic medicineMunicipal solid wastelcsh:Biotechnology030106 microbiologyHydroxybutyratesBioengineeringRhodospirillum rubrumSolid WasteApplied Microbiology and BiotechnologyBiochemistryMicrowave assisted12. Responsible consumption03 medical and health sciencesBioproductslcsh:TP248.13-248.65Process engineeringHighlightbusiness.industryBiotechnology030104 developmental biologyBiodegradation EnvironmentalEnvironmental sciencebusinessPyrolysisSyngasBiotechnologyMicrobial biotechnology
researchProduct

Thermophilic anaerobic conversion of raw microalgae: Microbial community diversity in high solids retention systems

2019

[EN] The potential of microbial communities for efficient anaerobic conversion of raw microalgae was evaluated in this work. A long-term operated thermophilic digester was fed with three different Organic Loading Rates (OLR) (0.2, 0.3 and 0.4¿g·L¿1·d¿1) reaching 32¿41% biodegradability values. The microbial community analysis revealed a remarkable presence of microorganisms that exhibit high hydrolytic capabilities such as Thermotogae (~44.5%), Firmicutes (~17.6%) and Dictyoglomi, Aminicenantes, Atribacteria and Planctomycetes (below ~5.5%) phyla. The suggested metabolic role of these phyla highlights the importance of protein hydrolysis and fermentation when only degrading microalgae. The …

0301 basic medicineRenewable energyFirmicutesBioreactor010501 environmental sciences01 natural sciences03 medical and health sciencesAnaerobic digestionMicrobial communityBioreactorMicroalgaeFood scienceTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesbiologyChemistryThermophilic digesterArmatimonadetesBiodegradationbiology.organism_classificationAnaerobic digestion030104 developmental biologyMicrobial population biologyFermentation16S rRNA geneAgronomy and Crop Science
researchProduct

Impact of poplar-based phytomanagement on soil properties and microbial communities in a metal-contaminated site

2016

Despite a long history of use in phytomanagement strategies, the impacts of poplar trees on the structure and function of microbial communities that live in the soil remain largely unknown. The current study combined fungal and bacterial community analyses from different management regimes using Illumina-based sequencing with soil analysis. The poplar phytomanagement regimes led to a significant increase in soil fertility and a decreased bioavailability of Zn and Cd, in concert with changes in the microbial communities. The most notable changes in the relative abundance of taxa and operational taxonomic units unsurprisingly indicated that root and soil constitute distinct ecological microbi…

0301 basic medicineSoil testMicrobial ConsortiaEnvironmentPlant RootsApplied Microbiology and BiotechnologyMicrobiology[ SDV.EE ] Life Sciences [q-bio]/Ecology environmentSoil03 medical and health sciencesMicrobial ecologyMycorrhizaeSoil PollutantsDominance (ecology)Relative species abundanceComputingMilieux_MISCELLANEOUSEcosystemSoil Microbiology[SDV.EE]Life Sciences [q-bio]/Ecology environment2. Zero hungerLaccariaEcologybiologyEcologyfungiHigh-Throughput Nucleotide Sequencingfood and beverages15. Life on landbiology.organism_classificationBiodegradation EnvironmentalPopulus030104 developmental biologyAgronomyHabitatPenicillium canescensMetalsSoil fertilityFEMS Microbiology Ecology
researchProduct