Search results for "bioink"

showing 5 items of 5 documents

Three-Dimensional Bioprinting for Cartilage Tissue Engineering: Insights into Naturally-Derived Bioinks from Land and Marine Sources

2022

In regenerative medicine and tissue engineering, the possibility to: (I) customize the shape and size of scaffolds, (II) develop highly mimicked tissues with a precise digital control, (III) manufacture complex structures and (IV) reduce the wastes related to the production process, are the main advantages of additive manufacturing technologies such as three-dimensional (3D) bioprinting. Specifically, this technique, which uses suitable hydrogel-based bioinks, enriched with cells and/or growth factors, has received significant consideration, especially in cartilage tissue engineering (CTE). In this field of interest, it may allow mimicking the complex native zonal hyaline cartilage organiza…

Biomaterials3D bioprintingland sourcesBiomedical Engineeringcartilage tissue engineeringbioinkmarine sourcesadditive manufacturing
researchProduct

κ-Carrageenan and PVA blends as bioinks to 3D print scaffolds for cartilage reconstruction.

2022

3D printing of polymeric scaffolds and autologous stem cells is a promising tool for damaged facial cartilage reconstruction surgeries. To this end, suitable bioinks are needed to generate scaffolds with the required morphological and functional features. We formulated hydrogel bioinks using k-Carrageen (kC) and poly(vinyl alcohol) (PVA) in three different weight ratios. The kC gives the systems the ability to undergo rapid sol-to-gel transitions upon cooling from 60 °C and above to body temperature, while the PVA is used as rheology modifier and porogen. The latter is crosslinked after molding or printing by freeze-thaw cycling for 1 day (FT1) or 5 days (FT5). To select the most suitable f…

CartilageTissue ScaffoldsTissue EngineeringStructural BiologyPrinting Three-DimensionalHydrogelsGeneral MedicineCarrageenanMolecular BiologyBiochemistryspheroids from human adipose stem cells 3D printing hydrogel bioinksInternational journal of biological macromolecules
researchProduct

3D Bioprinting for Vascularized Tissue-Engineered Bone Fabrication

2020

Vascularization in bone tissues is essential for the distribution of nutrients and oxygen, as well as the removal of waste products. Fabrication of tissue-engineered bone constructs with functional vascular networks has great potential for biomimicking nature bone tissue in vitro and enhancing bone regeneration in vivo. Over the past decades, many approaches have been applied to fabricate biomimetic vascularized tissue-engineered bone constructs. However, traditional tissue-engineered methods based on seeding cells into scaffolds are unable to control the spatial architecture and the encapsulated cell distribution precisely, which posed a significant challenge in constructing complex vascul…

Materials sciencebioinksReview02 engineering and technologyBone tissuelcsh:Technologylaw.invention03 medical and health sciencesbone regenerationvascularizationTissue engineeringlawmedicineGeneral Materials Sciencelcsh:MicroscopyBone regenerationlcsh:QC120-168.85030304 developmental biology3D bioprinting0303 health sciences3D bioprintinglcsh:QH201-278.5lcsh:T021001 nanoscience & nanotechnologymedicine.anatomical_structureVascularized bonelcsh:TA1-2040tissue engineeringlcsh:Descriptive and experimental mechanicsTissue engineered bonelcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)0210 nano-technologylcsh:TK1-9971Biomedical engineeringMaterials
researchProduct

Correlating Rheological Properties of a Gellan Gum-Based Bioink: A Study of the Impact of Cell Density.

2022

Here, for the production of a bioink-based gellan gum, an amino derivative of this polysaccharide was mixed with a mono-functionalized aldehyde polyethyleneglycol in order to improve viscoelastic macroscopic properties and the potential processability by means of bioprinting techniques as confirmed by the printing tests. The dynamic Schiff base linkage between amino and aldehyde groups temporally modulates the rheological properties and allows a reduction of the applied pressure during extrusion followed by the recovery of gellan gum strength. Rheological properties, often related to printing resolution, were extensively investigated confirming pseudoplastic behavior and thermotropic and io…

Polymers and Plasticsionotropic crosslinkingSettore CHIM/09 - Farmaceutico Tecnologico Applicativogellan gum; ionotropic crosslinking; schiff base; cell densities; bioinkGeneral Chemistrybioinkschiff basecell densitiesgellan gumPolymers
researchProduct

k-Carrageenan and PVA blends as 3D printing bioinks for cartilage reconstruction scaffolding

2021

Settore CHIM/07 - Fondamenti Chimici Delle TecnologieSpheroids from human adipose stem cells 3D printing Hydrogel bioinks PVA k-carrageenan
researchProduct