Search results for "biotin"

showing 10 items of 127 documents

Reactive Surface Coatings Based on Polysilsesquioxanes: Controlled Functionalization for Specific Protein Immobilization

2009

The key designing in reliable biosensors is the preparation of thin films in which biomolecular functions may be immobilized and addressed in a controlled and reproducible manner. This requires the controlled preparation of specific binding sites on planar surfaces. Poly(methylsilsesquioxane)-poly(pentafluorophenyl acrylates) (PMSSQ-PFPA) are promising materials to produce stable and adherent thin reactive coatings on various substrates. Those reactive surface coatings could be applied onto various materials, for example, gold, polycarbonate (PC), poly(tetrafluoroethylene) (PTFE), and glass. By dipping those substrates in a solution of a desired amine, specific binding sites for protein ads…

StreptavidinMaterials sciencePolymersSurface PropertiesBiotinInfrared spectroscopyMicroscopy Atomic Forcechemistry.chemical_compoundAdsorptionSpectroscopy Fourier Transform InfraredElectrochemistryOrganic chemistryBiotinylationOrganosilicon CompoundsGeneral Materials ScienceFourier transform infrared spectroscopySurface plasmon resonanceFuransPolytetrafluoroethyleneSpectroscopyPolycarboxylate CementTemperaturetechnology industry and agricultureProteinsSurfaces and InterfacesCondensed Matter PhysicsAmidesQuaternary Ammonium CompoundsModels ChemicalchemistryChemical engineeringSurface modificationGlassBiosensorProtein adsorptionLangmuir
researchProduct

Streptavidin-coated TiO2 surfaces are biologically inert: Protein adsorption and osteoblast adhesion studies

2011

Non-fouling TiO2 surfaces are attractive for a wide range of applications such as biosensors and medical devices, where biologically inert surfaces are needed. Typically, this is achieved by controlled surface modifications which prevent protein adsorption. For example, polyethylene glycol (PEG) or PEG-derived polymers have been widely applied to render TiO2 surfaces biologically inert. These surfaces have been further modified in order to achieve specific bio-activation. Therefore, there have been efforts to specifically functionalize TiO2 surfaces with polymers with embedded biotin motives, which can be used to couple streptavidin for further functionalization. As an alternative, here a s…

StreptavidinMaterials scienceSurface PropertiesBiomedical EngineeringNanotechnologyMicroscopy Atomic ForceCell LineBiomaterialschemistry.chemical_compoundCell AdhesionHumansBiotinylationTitaniumchemistry.chemical_classificationOsteoblaststechnology industry and agricultureMetals and AlloysPolymerSilanesFibronectinsKineticsSurface coatingchemistryBiotinylationCeramics and CompositesSurface modificationMuramidaseAdsorptionStreptavidinBiosensorLayer (electronics)Protein adsorptionJournal of Biomedical Materials Research Part A
researchProduct

Layer-by-Layer Assembly of a Streptavidin–Fibronectin Multilayer on Biotinylated TiOX

2013

The biomodification of surfaces, especially titanium, is an important issue in current biomedical research. Regarding titanium, it is also important to ensure a specific protein modification of its surface because here protein binding that is too random can be observed. Specific nanoscale architectures can be applied to overcome this problem. As recently shown, streptavidin can be used as a coupling agent to immobilize biotinylated fibronectin (bFn) on a TiO(X) surface. Because of the conformation of adsorbed biotinylated fibronectin on a streptavidin monolayer, it is possible to adsorb more streptavidin and biotinylated fibronectin layers. On this basis, an alternating protein multilayer c…

StreptavidinMaterials sciencechemistry.chemical_compoundAdsorptionBiotinMonolayerElectrochemistryBiotinylationGeneral Materials ScienceSpectroscopyFluorescent DyesTitaniumbiologyLayer by layertechnology industry and agriculturefood and beveragesSurfaces and InterfacesCondensed Matter PhysicsFibronectinsFibronectinSpectrometry FluorescencechemistryBiotinylationbiology.proteinBiophysicsAdsorptionStreptavidinLayer (electronics)Langmuir
researchProduct

Dimer-tetramer transition between solution and crystalline states of streptavidin and avidin mutants.

2003

ABSTRACT The biotin-binding tetrameric proteins, streptavidin from Streptomyces avidinii and chicken egg white avidin, are excellent models for the study of subunit-subunit interactions of a multimeric protein. Efforts are thus being made to prepare mutated forms of streptavidin and avidin, which would form monomers or dimers, in order to examine their effect on quaternary structure and assembly. In the present communication, we compared the crystal structures of binding site W→K mutations in streptavidin and avidin. In solution, both mutant proteins are known to form dimers, but upon crystallization, both formed tetramers with the same parameters as the native proteins. All of the intersub…

StreptavidinModels MolecularStereochemistryProtein ConformationDimerBiotinCrystallography X-RayMicrobiologychemistry.chemical_compoundProtein structureBiotinTetramerEgg WhiteStructural BiologyAnimalsProtein Structure QuaternaryMolecular BiologyBinding SitesbiologyAvidinStreptomycesSolutionschemistryBiochemistryBiotinylationMutationbiology.proteinProtein quaternary structureStreptavidinCarrier ProteinsCrystallizationChickensDimerizationAvidinJournal of bacteriology
researchProduct

Molecular recognition in biotin-streptavidin systems and analogues at the air-water interface

1992

Abstract Specific interaction between biotin and the protein streptavidin in monolayers of synthetic lipids with biotin headgroups has been shown to lead to formation of highly ordered two-dimensional streptavidin crystals. The same behaviour is observed when using desthiobiotin as lipid headgroup which exhibits a significantly lower binding constant compared with biotin (5 × 10 13 M -1 compared with 10 15 M -1 ). This offers the possibility of detaching competetively the 2D crystalline streptavidin layer by addition of free biotin to the aqueous phase. Use of lipoic acid as lipid headgroup ( K a = 7 × 10 7 M −1 ) leads to formation of small snisotropic protein domains indicating a crystall…

StreptavidinStereochemistrytechnology industry and agricultureMetals and AlloysAqueous two-phase systemSurfaces and InterfacesBinding constantSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionchemistry.chemical_compoundMolecular recognitionBiotinchemistrylawBiotinylationMonolayerMaterials ChemistryBiophysicslipids (amino acids peptides and proteins)CrystallizationThin Solid Films
researchProduct

Crystallization and preliminary X-ray analysis of W120K mutant of streptavidin.

2001

Bacterial streptavidin and chicken avidin are homotetrameric proteins that share an exceptionally high affinity towards the vitamin biotin. The biotin-binding sites in both proteins contain a crucial tryptophan residue contributed from an adjacent subunit. This particular tryptophan (W110 in avidin and W120 in streptavidin) plays an important role in both biotin binding and in the quaternary stabilities of the proteins. An intriguing naturally occurring alteration of tryptophan to lysine was previously described in the C-terminal domain of sea-urchin fibropellins, which share a relatively high sequence similarity with avidin and streptavidin. Avidin (Avm-W110K) and streptavidin (Savm-W120K)…

StreptavidinStrep-tagBiotin bindingbiologyProtein ConformationLysineTryptophanTryptophanGeneral MedicineCrystallography X-Raychemistry.chemical_compoundCrystallographyProtein structureBiotinchemistryAmino Acid SubstitutionBacterial ProteinsStructural BiologyBiotinylationMutationbiology.proteinStreptavidinCrystallizationBaculoviridaeAvidinActa crystallographica. Section D, Biological crystallography
researchProduct

Surface-immobilized DNAzyme-type biocatalysis

2014

The structure of the double helix of deoxyribonucleic acid (DNA, also called duplex-DNA) was elucidated sixty years ago by Watson, Crick, Wilkins and Franklin. Since then, DNA has continued to hold a fascination for researchers in diverse fields including medicine and nanobiotechnology. Nature has indeed excelled in diversifying the use of DNA: beyond its canonical role of repository of genetic information, DNA could also act as a nanofactory able to perform some complex catalytic tasks in an enzyme-mimicking manner. The catalytic capability of DNA was termed DNAzyme; in this context, a peculiar DNA structure, a quadruple helix also named quadruplex-DNA, has recently garnered considerable i…

StreptavidinSurface PropertiesImmobilized Nucleic AcidsDeoxyribozymeContext (language use)Nanotechnology010402 general chemistryG-quadruplex01 natural sciences[ CHIM ] Chemical Scienceschemistry.chemical_compoundNanobiotechnology[CHIM]Chemical Sciencesheterocyclic compoundsGeneral Materials ScienceComputingMilieux_MISCELLANEOUS010405 organic chemistryDNA Catalytic[CHIM.CATA]Chemical Sciences/Catalysis0104 chemical sciencesG-QuadruplexesPeroxidaseschemistryBiotinylationHelixBiocatalysisOxidation-ReductionDNA
researchProduct

Molecular cloning and nucleotide sequence of chicken avidin-related genes 1-5.

1994

Using avidin cDNA as a hybridisation probe, we detected a gene family whose putative products are related to the chicken egg-white avidin. Two overlapping genomic clones were found to contain five genes (avidin-related genes 1–5, avrl-avr5), which have been cloned, characterized and sequenced. All of the genes have a four-exon structure with an overall identity with the avidin cDNA of 88–92%. The genes appear to have no pseudogenic features and, in fact, two of these genes have been shown to be transcribed. The putative proteins share a sequence identity of 68–78% with avidin. The amino acid residues responsible for the biotin-binding activity of avidin and the bacterial biotin-binding prot…

StreptavidinTranscription GeneticMolecular Sequence DataRestriction MappingBiotinBiologyMolecular cloningBiochemistryPolymerase Chain Reactionchemistry.chemical_compoundstomatognathic systemBacterial ProteinsIn vivoComplementary DNASequence Homology Nucleic AcidAnimalsAmino Acid SequenceCloning MolecularProtein PrecursorsGeneConserved SequenceRegulation of gene expressionGeneticsSequence Homology Amino AcidNucleic acid sequenceDNAExonsAvidinRecombinant Proteinschemistrybiology.proteinStreptavidinChickensPseudogenesAvidinEuropean journal of biochemistry
researchProduct

Molecular Recognition of Biotinyl Hydrophobic Helical Peptides with Streptavidin at the Air/Water Interface

1994

Streptavidinchemistry.chemical_classificationAir water interfaceStereochemistryPeptideGeneral ChemistryBiochemistryCatalysischemistry.chemical_compoundColloid and Surface ChemistryMolecular recognitionBiotinchemistryMonolayerMoleculeJournal of the American Chemical Society
researchProduct

Specific Protein Binding to Functionalized Interfaces

1992

We report on the characterization of specific binding reactions between streptavidin and biotinylated model membrane surfaces. Self-assembly techniques as well as the Langmuir-Blodgett-Kuhn method were employed to prepare reactive, functionalized surfaces on various solid supports in contact with the aqueous protein solution. Plasmon surface polaritons optical measurements as well as atomic force microscopy and studies with the surface forces apparatus give rather detailed information as to the streptavidin monolayer formation, the kinetics of this process (either binding site- or diffusion limited), the selectivity of the reaction at laterally heterogeneous membranes, and the involved inte…

Streptavidinchemistry.chemical_compoundAqueous solutionMembraneChemistryBiotinylationMonolayerSurface forces apparatusBinding siteCombinatorial chemistryPlasmon
researchProduct