Search results for "black holes"

showing 10 items of 67 documents

Search for eccentric binary black hole mergers with advanced LIGO and advanced Virgo during their first and second observing runs

2019

When formed through dynamical interactions, stellar-mass binary black holes may retain eccentric orbits ($e>0.1$ at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically-formed binaries from isolated binary black hole mergers. Current template-based gravitational-wave searches do not use waveform models associated to eccentric orbits, rendering the search less efficient to eccentric binary systems. Here we present results of a search for binary black hole mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. The search uses min…

AstrofísicaGravitació010504 meteorology & atmospheric sciencesIMPACTAstronomyWAVESBinary numberAstrophysicsgravitational waves; black hole; LIGO; VirgoLIGO-Virgo01 natural sciencesRendering (computer graphics)GravitationElliptical orbitCOMPACT-OBJECT BINARIESblack holeEccentricCOMPACT-OBJECT BINARIES; YOUNG STAR-CLUSTERS; EVOLUTION; PERTURBATIONS; PROGENITORS; IMPACT;WAVESEccentricity (behavior)LIGO010303 astronomy & astrophysicsorbitQCmedia_commonQBSettore FIS/01PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PROGENITORSAstrophysical black holesGravitational waves; Elliptical orbits; Astrophysical black holesPERTURBATIONSJustice and Strong Institutionsgravitational wavesPhysical SciencesAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaYOUNG STAR-CLUSTERSGravitational wavedata analysis methodSDG 16 - Peacemedia_common.quotation_subjectGravitational waves Elliptical orbits Astrophysical black holesFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & AstrophysicsGravitational wavesElliptical orbitsGeneral Relativity and Quantum CosmologySettore FIS/05 - Astronomia e AstrofisicaBinary black holebinary: coalescencestatistical analysis0103 physical sciencesWaveformSTFC0105 earth and related environmental sciencesScience & Technologybinary: formationVirgoSDG 16 - Peace Justice and Strong Institutionsgravitational radiationRCUKAstronomy and Astrophysics/dk/atira/pure/sustainabledevelopmentgoals/peace_justice_and_strong_institutionsLIGOEVOLUTIONgravitational radiation detectordetector: sensitivityVIRGOPhysics and Astronomyblack hole: binarySpace and Planetary Sciencegravitational radiation: emissioneccentric BBHstar: mass[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Multimessenger Binary Mergers Containing Neutron Stars: Gravitational Waves, Jets, and γ-Ray Bursts

2021

Neutron stars (NSs) are extraordinary not only because they are the densest form of matter in the visible Universe but also because they can generate magnetic fields ten orders of magnitude larger than those currently constructed on earth. The combination of extreme gravity with the enormous electromagnetic (EM) fields gives rise to spectacular phenomena like those observed on August 2017 with the merger of a binary neutron star system, an event that generated a gravitational wave (GW) signal, a short γ-ray burst (sGRB), and a kilonova. This event serves as the highlight so far of the era of multimessenger astronomy. In this review, we present the current state of our theoretical understand…

Astrofísicalcsh:Astronomymedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsKilonova01 natural sciencesneutron starslcsh:QB1-9910103 physical sciencesNeutronmultimessenger astronomy010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsmedia_commonPhysics010308 nuclear & particles physicsGravitational wavelcsh:QC801-809Astronomy and Astrophysicsshort gamma-ray burstsnumerical relativityblack holesUniverseNumerical relativityNeutron starlcsh:Geophysics. Cosmic physicsgravitational wavesAstronomiaGamma-ray burstEvent (particle physics)Frontiers in Astronomy and Space Sciences
researchProduct

GW190521: A Binary Black Hole Merger with a Total Mass of 150  M⊙

2020

LIGO Scientific Collaboration and Virgo Collaboration: et al.

AstronomyGeneral Physics and Astronomydetector: networkAstrophysicsGravitational waves; Binary black holes Intermediate mass black holes01 natural sciencesGeneral Relativity and Quantum Cosmologygravitational waves; black holesGW190521 BBHIntermediate mass black holesLIGO10. No inequalityQCQBSettore FIS/01astro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPAIR-INSTABILITYSettore FIS/05Physicsstatistical analysis: BayesianSupernovaPhysical SciencesPhysique des particules élémentaires[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaGravitational wavedata analysis methodBinary black holes Intermediate mass black holesgr-qcPhysics MultidisciplinaryFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Physics and Astronomy(all)Gravitation and AstrophysicsGravitational wavespair-instabilitySettore FIS/05 - Astronomia e AstrofisicaBinary black holeBinary black holesNeutron starsgravitational wavessupernova0103 physical sciences010306 general physicsLuminosity distanceSTFCGW190521Science & Technology9. Industry and infrastructureGravitational wavegravitational radiationRCUKblack hole: massgravitational waves black holegravitational radiation detectorLIGORedshiftBlack holewave: modelVIRGOblack hole: binaryIntermediate-mass black holegravitational radiation: emissionBBH[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

PBH assisted search for QCD axion dark matter

2022

The entropy production prior to BBN era is one of ways to prevent QCD axion with the decay constant $F_{a}\in[10^{12}{\rm GeV},10^{16}{\rm GeV}]$ from overclosing the universe when the misalignment angle is $\theta_{\rm i}=\mathcal{O}(1)$. As such, it is necessarily accompanied by an early matter-dominated era (EMD) provided the entropy production is achieved via the decay of a heavy particle. In this work, we consider the possibility of formation of primordial black holes during the EMD era with the assumption of the enhanced primordial scalar perturbation on small scales ($k>10^{4}{\rm Mpc}^{-1}$). In such a scenario, it is expected that PBHs with axion halo accretion develop to ultracomp…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)axionsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesmustat aukotAstrophysics::Cosmology and Extragalactic Astrophysicshiukkasfysiikkakosmologianeutron starspimeä aineHigh Energy Physics - Phenomenology (hep-ph)neutronitähdetParticle Physics - PhenomenologyHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEdark matter experimentsHigh Energy Physics::Phenomenologyprimordial black holesAstronomy and Astrophysicshep-phHigh Energy Physics - Phenomenologyastro-ph.COkvanttiväridynamiikkaHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Femtolensing by dark matter revisited

2018

Femtolensing of gamma ray bursts (GRBs) has been put forward as an exciting possibility to probe exotic astrophysical objects with masses below $10^{-13}$ solar masses such as small primordial black holes or ultra-compact dark matter minihalos, made up for instance of QCD axions. In this paper we critically review this idea, properly taking into account the extended nature of the source as well as wave optics effects. We demonstrate that most GRBs are inappropriate for femtolensing searches due to their large sizes. This removes the previous femtolensing bounds on primordial black holes, implying that vast regions of parameter space for primordial black hole dark matter are not robustly con…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)spectraAstrophysics::High Energy Astrophysical PhenomenaDark mattergravitational lensinghaloFOS: Physical sciencesPrimordial black holegamma ray experimentsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsParameter space01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsAxionParticle Physics - PhenomenologyPhysicsQuantum chromodynamicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)Solar mass010308 nuclear & particles physicsraydark matter experimentsprimordial black holesAstronomy and Astrophysicshep-phPhysical opticsHigh Energy Physics - Phenomenologypair production13. Climate actionastro-ph.COGamma-ray burstlimitsAstrophysics - High Energy Astrophysical Phenomenagravitational-wavesAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Swift & Fermi GRBs with LIGO-Virgo run O3a data

2023

We search for gravitational-wave transients associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the first part of the third observing run of Advanced LIGO and Advanced Virgo (2019 April 1 15:00 UTC-2019 October 1 15:00 UTC). A total of 105 GRBs were analyzed using a search for generic gravitational-wave transients; 32 GRBs were analyzed with a search that specifically targets neutron star binary mergers as short GRB progenitors. We find no significant evidence for gravitational-wave signals associated with the GRBs that we followed up, nor for a population of unidentified subthreshold signals. We consider several source types and signal morphologies, an…

Astrophysics and AstronomyGamma-ray astronomyhigh energy astrophysicsBlack holesPhysicsstellar astronomyGamma ray burstsGravitational wavesNeutron starsCosmologyobservational astronomyGamma ray astronomyGamma-ray burstsAstrophysical ProcessesNatural Sciences
researchProduct

Search for microscopic black holes in a like-sign dimuon final state using large track multiplicity with the ATLAS detector

2013

A search is presented for microscopic black holes in a like-sign dimuon final state in proton-proton collisions at √s= 8 TeV. The data were collected with the ATLAS detector at the Large Hadron Collider in 2012 and correspond to an integrated luminosity of 20.3 fb-1. Using a high track multiplicity requirement, 0.6±0.2 background events from Standard Model processes are predicted and none observed. This result is interpreted in the context of low-scale gravity models and 95% CL lower limits on microscopic black hole masses are set for different model assumptions.

Atlas detectorCiencias FísicasNuclear TheoryHadronDimensions01 natural sciencesHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)Micro black hole[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]QANuclear ExperimentGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCPhysicsLarge Hadron ColliderLARGE EXTRA DIMENSIONSSettore FIS/01 - Fisica Sperimentaleblack holes; ATLAS detector; microscopicATLASPhysical SciencesLHCParticle Physics - ExperimentCIENCIAS NATURALES Y EXACTASNuclear and High Energy PhysicsParticle physicsCiências Naturais::Ciências Físicas530 PhysicsAstrophysics::High Energy Astrophysical Phenomena:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesddc:500.2530Nuclear physics0103 physical sciencesFysikddc:530High Energy PhysicsMultiplicity (chemistry)010306 general physicsCiencias ExactasScience & TechnologyATLAS detector010308 nuclear & particles physicsMillimeterFísica//purl.org/becyt/ford/1.3 [https]black holesAstronomíaBlack holeHADRON-HADRON COLLISIONSExperimental High Energy PhysicsTevPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentGravity SignaturesPHYSICAL REVIEW D
researchProduct

Search for strong gravity signatures in same-sign dimuon final states using the ATLAS detector at the LHC

2012

A search for microscopic black holes has been performed in a same-sign dimuon final state using 1.3 fb[superscript −1] of proton–proton collision data collected with the ATLAS detector at a centre of mass energy of 7 TeV at the CERN Large Hadron Collider. The data are found to be consistent with the expectation from the Standard Model and the results are used to derive exclusion contours in the context of a low scale gravity model.

Atlas detectorPhysics::Instrumentation and DetectorsHadron01 natural sciencesHigh Energy Physics - ExperimentMicro black holeHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentDetectors de radiacióPhysicsINTERAÇÕES NUCLEARESLarge Hadron ColliderBLACK HOLEAtlas (topology)Strong gravityAcceleradors de partículesExtra DimensionsSettore FIS/01 - Fisica SperimentaleMicroscopic black holesATLASExtra dimensionsLarge Hadron ColliderComputingMethodologies_DOCUMENTANDTEXTPROCESSINGExtra dimensionsAtlasLHCParticle Physics - ExperimentNuclear and High Energy PhysicsParticle physicsDIMENSIONSCOLLISIONSSame-sign dimuonsCiências Naturais::Ciências Físicas:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesddc:500.2GRAVITY ON BRANE WORLDS530Partícules (Física nuclear)Nuclear physics0103 physical sciencesddc:530High Energy Physics010306 general physicsBLACK-HOLESMILLIMETERCiencias ExactasScience & TechnologyROOT-S=7 TEVATLAS detector010308 nuclear & particles physicssame-sign dimuons; microscopic black holes; extra dimensions; lhc; atlasFísicaCollisionLHC; ATLAS; Microscopic black holes; Extra dimensions; Same-sign dimuonsHADRON-HADRON COLLISIONSCol·lisions (Física nuclear)Experimental High Energy PhysicsPhysics::Accelerator PhysicsHigh Energy Physics::Experiment
researchProduct

Black hole lightning due to particle acceleration at subhorizon scales

2015

Supermassive black holes with masses of millions to billions of solar masses are commonly found in the centers of galaxies. Astronomers seek to image jet formation using radio interferometry, but still suffer from insufficient angular resolution. An alternative method to resolve small structures is to measure the time variability of their emission. Here, we report on gamma-ray observations of the radio galaxy IC 310 obtained with the MAGIC telescopes revealing variability with doubling time scales faster than 4.8 min. Causality constrains the size of the emission region to be smaller than 20\% of the gravitational radius of its central black hole. We suggest that the emission is associated …

Black HolesRadio galaxyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsVery High Energy Gamma AstronomyBlack Holes Very High Energy Gamma Astronomy Active Galactic NucleiX-shaped radio galaxysupermassive black hole ; jet formation ; IC 310 ; MAGIC telescopesAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HESupermassive black holeta115MultidisciplinaryPhysicsActive Galactic NucleiAstronomy and AstrophysicsGalaxyIntermediate-mass black holeStellar black holeElectrónicaFísica nuclearddc:500Spin-flipElectricidadAstrophysics - High Energy Astrophysical PhenomenaSchwarzschild radius
researchProduct

Monitoring the Morphology of M87* in 2009-2017 with the Event Horizon Telescope

2020

All authors: Wielgus, Maciek; Akiyama, Kazunori; Blackburn, Lindy; Chan, Chi-kwan; Dexter, Jason; Doeleman, Sheperd S.; Fish, Vincent L.; Issaoun, Sara; Johnson, Michael D.; Krichbaum, Thomas P.; Lu, Ru-Sen; Pesce, Dominic W.; Wong, George N.; Bower, Geoffrey C.; Broderick, Avery E.; Chael, Andrew; Chatterjee, Koushik; Gammie, Charles F.; Georgiev, Boris; Hada, Kazuhiro Loinard, Laurent; Markoff, Sera; Marrone, Daniel P.; Plambeck, Richard; Weintroub, Jonathan; Dexter, Matthew; MacMahon, David H. E.; Wright, Melvyn; Alberdi, Antxon; Alef, Walter; Asada, Keiichi; Azulay, Rebecca; Baczko, Anne-Kathrin; Ball, David; Baloković, Mislav; Barausse, Enrico; Barrett, John; Bintley, Dan; Boland, Wilf…

Brightness1663Active galactic nucleus010504 meteorology & atmospheric sciences1346Event horizonAstronomyAstrophysics::High Energy Astrophysical PhenomenaGalaxy accretion disksFOS: Physical sciencesAstrophysicsF500Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences5752033Settore FIS/05 - Astronomia e AstrofisicaSupermassive black holes0103 physical sciencesVery-long-baseline interferometryAstronomy Astrophysics and Cosmology1769010303 astronomy & astrophysicsComputer Vision and Robotics (Autonomous Systems)Astronomy data modelingVery long baseline interferometry0105 earth and related environmental sciences162Black holes; Galaxy accretion disks; Galaxy accretion; Supermassive black holes; Active galactic nuclei; Low-luminosity active galactic nuclei; Very long baseline interferometry; Astronomy data modeling; Radio interferometryEvent Horizon TelescopePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Active galactic nucleiSupermassive black holeBlack holesAstronomy and Astrophysics16Galaxy accretion562Position angleGalaxyLow-luminosity active galactic nucleiMedical Image ProcessingSpace and Planetary ScienceRadio interferometryAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]1859
researchProduct