Search results for "blanket"
showing 10 items of 141 documents
Characterization and thermomechanical assessment of a SiC-sandwich material for Flow Channel Inserts in DCLL blankets
2019
Abstract Flow Channel Inserts (FCIs) are key elements in the high-temperature Dual Coolant Lead Lithium (DCLL) blanket, since they insulate electrically the flowing PbLi to avoid MHD effects and protect the steel structure from the hot liquid metal. SiC-based materials are main candidates for high-temperature FCIs, being a dense-porous SiC-based sandwich material an attractive option. The present work is focused on the development of such a SiC-based material. On the one hand, in order to assess the suitability of the concept for FCIs, the main results of a stress analysis, MHD and heat transfer simulations are summarized. On the other hand, the experimental production of the SiC-based mate…
Systems engineering activities supporting the heating & current drive and fuelling lines systems integration in the European DEMO breeding blanket
2019
This paper describes the contribution given by the application of the systems engineering approach to the European DEMO Breeding Blanket (BB) integration studies, focussing on the integration of Heating & Current Drive (H&CD) and Fuelling Lines (FL) systems. In particular, attention has been paid to the BB-H&CD and BB-FL interfaces identification, definition and capture of the proper interface requirements necessary to drive the integration process and, as a consequence, supply a feedback for the reciprocal design of the interconnected systems. The defined interfaces are synthetically described in the paper and the results of the interface requirements capture process are shown,…
Conceptual design of the main Ancillary Systems of the ITER Water Cooled Lithium Lead Test Blanket System
2021
Abstract The Water Cooled Lithium Lead Test Blanket System (WCLL TBS) is one of the EU Test Blanket Systems candidate for being installed and operated in ITER. In view of its Conceptual Design Review by F4E and ITER Organization (IO), planned for mid-September 2020, several technical activities have been performed in the areas of WCLL TBS Ancillary Systems design. In this article the outcomes of the conceptual design phase of the four main Ancillary Systems of WCLL TBS, namely the Water Cooling System (WCS), the Coolant Purification System (CPS), the PbLi loop and the Tritium Extraction System (TES), are reported and critically discussed. In particular, for each Ancillary System hereafter a…
Modeling of ITER TF cooling system through 2D thermal analyses and enthalpy balance
2017
Abstract The winding pack of the ITER Toroidal Field (TF) coils is composed of 134 turns of Nb3Sn Cable in Conduit Conductor (CICCs) wound in 7 double pancakes and cooled by supercritical helium (He) at cryogenic temperature. The cooling of the Stainless Steel (SS) case supporting the winding pack is guaranteed by He circulation in 74 parallel channels. A 2D approach to compute the temperature distribution in the ITER TF winding pack is here proposed. The TF is divided in 32 poloidal segments, for each segment the corresponding 2D model is built and a thermal analysis is performed applying the corresponding nuclear heating computed with MCNP code considering the latest design updates, such …
Experimental tests and thermo-mechanical analyses on the HEXCALIBER mock-up
2008
Abstract Within the framework of the R&D activities promoted by European Fusion Development Agreement on the helium-cooled pebble bed test blanket module to be irradiated in ITER, ENEA Brasimone and the Department of Nuclear Engineering of the University of Palermo performed intense research activities on the modelling of the thermo-mechanical behaviour of both beryllium and lithiated ceramics pebble beds, which are envisaged to be used, respectively, as neutron multiplier and tritium breeder. In particular, at the DIN a thermo mechanical constitutive model was developed for both lithiated ceramics and beryllium pebble beds and it was successfully implemented on a commercial finite element …
On the effects of the Double-Walled Tubes lay-out on the DEMO WCLL breeding blanket module thermal behavior
2019
Abstract The EU-DEMO Water-Cooled Lithium Lead Breeding Blanket (WCLL BB) concept foresees liquid Pb-15.7Li eutectic alloy as breeder and neutron multiplier, whereas pressurized subcooled water as coolant, with operative conditions typical of the PWR fission reactors (temperature in the range of 295–328 °C and pressure of 15.5 MPa). The cooling down of the BB is guaranteed by means of two separated cooling circuits: the one consisted in square channels housed within the complex of Side Walls and First Wall, and the one composed of a set of Double-Walled Tubes (DWTs) submerged in the Breeding Zone (BZ) and deputed to remove heat power therein generated. A parametric thermal study has been ca…
Thermo-mechanical analyses and ways of optimization of the helium cooled DEMO First Wall under RCC-MRx rules
2017
Abstract The EUROfusion Consortium develops a design of a fusion power demonstrator plant (DEMO) in the framework of the European “Horizon 2020” innovation and research program. One of the key components in the fusion reactor is the Breeding Blanket (BB) surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. Among the 4 candidates for the DEMO BB, 2 of them use helium as coolant (HCPB, HCLL), and another one (DCLL) uses helium to cool down the First Wall (FW) only. Due to uncertainties regarding the plasma Heat Flux (HF) load the DEMO BB integrated FW will have to cope with, a set of sensitive thermal and stress analys…
MHD Free Convection in Helium-Cooled Lithium-Lead Blanket Modules for the Demonstration Fusion Reactor
2003
Parametric thermal analysis for the optimization of Double Walled Tubes layout in the Water Cooled Lithium Lead inboard blanket of DEMO fusion reactor
2019
Abstract Within the roadmap that will lead to the nuclear fusion exploitation for electric energy generation, the construction of a DEMOnstration (DEMO) reactor is, probably, the most important milestone to be reached since it will demonstrate the technological feasibility and economic competitiveness of an industrial-scale nuclear fusion reactor. In order to reach this goal, several European universities and research centres have joined their efforts in the EUROfusion action, funded by HORIZON 2020 UE programme. Within the framework of EUROfusion research activities, ENEA and University of Palermo are involved in the design of the Water-Cooled Lithium Lead Breeding Blanket (WCLL BB), that …
Neutronic and photonic analysis of the water-cooled Pb17Li test blanket module for ITER-FEAT
2002
Abstract Within the European Fusion Technology Program, the Water-Cooled Lithium Lead (WCLL) DEMO breeding blanket line was selected in 1995 as one of the two EU lines to be developed in the next decade, in particular with the aim of manufacturing a Test Blanket Module (TBM) to be implemented in ITER. This specific goal has been maintained also in ITER-FEAT program even if the general design parameters of the TBMs have reported some changes. This paper is focused on the investigation of the WCLL-TBM nuclear response in ITER-FEAT through detailed 3D-Monte Carlo neutronic and photonic analyses. A 3D heterogeneous model of the most recent design of the WCLL-TBM has been set-up simulating reali…