Search results for "boolean"
showing 10 items of 98 documents
Very Narrow Quantum OBDDs and Width Hierarchies for Classical OBDDs
2014
In the paper we investigate a model for computing of Boolean functions – Ordered Binary Decision Diagrams (OBDDs), which is a restricted version of Branching Programs. We present several results on the comparative complexity for several variants of OBDD models. We present some results on the comparative complexity of classical and quantum OBDDs. We consider a partial function depending on a parameter k such that for any k > 0 this function is computed by an exact quantum OBDD of width 2, but any classical OBDD (deterministic or stable bounded-error probabilistic) needs width 2 k + 1. We consider quantum and classical nondeterminism. We show that quantum nondeterminism can be more efficient …
On Rough Sets in Topological Boolean Algebras
1994
We have focused on rough sets in topological Boolean algebras. Our main ideas on rough sets are taken from concepts of Pawlak [4] and certain generalizations of his constructions which were offered by Wiweger [7]. One of the most important results of this note is a characterization of the rough sets determined by regular open and regular closed elements.
Spatial reasoning withRCC8and connectedness constraints in Euclidean spaces
2014
The language RCC 8 is a widely-studied formalism for describing topological arrangements of spatial regions. The variables of this language range over the collection of non-empty, regular closed sets of n-dimensional Euclidean space, here denoted RC + ( R n ) , and its non-logical primitives allow us to specify how the interiors, exteriors and boundaries of these sets intersect. The key question is the satisfiability problem: given a finite set of atomic RCC 8 -constraints in m variables, determine whether there exists an m-tuple of elements of RC + ( R n ) satisfying them. These problems are known to coincide for all n � 1 , so that RCC 8 -satisfiability is independent of dimension. This c…
Quantum Algorithms for Learning Symmetric Juntas via Adversary Bound
2014
In this paper, we study the following variant of the junta learning problem. We are given oracle access to a Boolean function f on n variables that only depends on k variables, and, when restricted to them, equals some predefined function h. The task is to identify the variables the function depends on. This is a generalisation of the Bernstein-Vazirani problem (when h is the XOR function) and the combinatorial group testing problem (when h is the OR function). We analyse the general case using the adversary bound, and give an alternative formulation for the quantum query complexity of this problem. We construct optimal quantum query algorithms for the cases when h is the OR function (compl…
New Developments in Quantum Algorithms
2010
In this survey, we describe two recent developments in quantum algorithms. The first new development is a quantum algorithm for evaluating a Boolean formula consisting of AND and OR gates of size N in time O(\sqrt{N}). This provides quantum speedups for any problem that can be expressed via Boolean formulas. This result can be also extended to span problems, a generalization of Boolean formulas. This provides an optimal quantum algorithm for any Boolean function in the black-box query model. The second new development is a quantum algorithm for solving systems of linear equations. In contrast with traditional algorithms that run in time O(N^{2.37...}) where N is the size of the system, the …
A Tight Lower Bound on Certificate Complexity in Terms of Block Sensitivity and Sensitivity
2014
Sensitivity, certificate complexity and block sensitivity are widely used Boolean function complexity measures. A longstanding open problem, proposed by Nisan and Szegedy [7], is whether sensitivity and block sensitivity are polynomially related. Motivated by the constructions of functions which achieve the largest known separations, we study the relation between 1-certificate complexity and 0-sensitivity and 0-block sensitivity.
Efficient CNF Encoding of Boolean Cardinality Constraints
2003
In this paper, we address the encoding into CNF clauses of Boolean cardinality constraints that arise in many practical applications. The proposed encoding is efficient with respect to unit propagation, which is implemented in almost all complete CNF satisfiability solvers. We prove the practical efficiency of this encoding on some problems arising in discrete tomography that involve many cardinality constraints. This encoding is also used together with a trivial variable elimination in order to re-encode parity learning benchmarks so that a simple Davis and Putnam procedure can solve them.
Inclusion ratio based estimator for the mean length of the boolean line segment model with an application to nanocrystalline cellulose
2014
A novel estimator for estimating the mean length of fibres is proposed for censored data observed in square shaped windows. Instead of observing the fibre lengths, we observe the ratio between the intensity estimates of minus-sampling and plus-sampling. It is well-known that both intensity estimators are biased. In the current work, we derive the ratio of these biases as a function of the mean length assuming a Boolean line segment model with exponentially distributed lengths and uniformly distributed directions. Having the observed ratio of the intensity estimators, the inverse of the derived function is suggested as a new estimator for the mean length. For this estimator, an approximation…
Topological Logics with Connectedness over Euclidean Spaces
2013
We consider the quantifier-free languages, Bc and Bc °, obtained by augmenting the signature of Boolean algebras with a unary predicate representing, respectively, the property of being connected, and the property of having a connected interior. These languages are interpreted over the regular closed sets of R n ( n ≥ 2) and, additionally, over the regular closed semilinear sets of R n . The resulting logics are examples of formalisms that have recently been proposed in the Artificial Intelligence literature under the rubric Qualitative Spatial Reasoning. We prove that the satisfiability problem for Bc is undecidable over the regular closed semilinear sets in all dimensions greater than 1,…
Functions definable by numerical set-expressions
2011
A "numerical set-expression" is a term specifying a cascade of arithmetic and logical operations to be performed on sets of non-negative integers. If these operations are confined to the usual Boolean operations together with the result of lifting addition to the level of sets, we speak of "additive circuits". If they are confined to the usual Boolean operations together with the result of lifting addition and multiplication to the level of sets, we speak of "arithmetic circuits". In this paper, we investigate the definability of sets and functions by means of additive and arithmetic circuits, occasionally augmented with additional operations.