Search results for "bottom"

showing 10 items of 450 documents

Mediterranean circulation perturbations over the last five centuries: Relevance to past Eastern Mediterranean Transient-type events

2016

The Eastern Mediterranean Transient (EMT) occurred in the Aegean Sea from 1988 to 1995 and is the most significant intermediate-to-deep Mediterranean overturning perturbation reported by instrumental records. The EMT was likely caused by accumulation of high salinity waters in the Levantine and enhanced heat loss in the Aegean Sea, coupled with surface water freshening in the Sicily Channel. It is still unknown whether similar transients occurred in the past and, if so, what their forcing processes were. In this study, sediments from the Sicily Channel document surface water freshening (SCFR) at 1910 ± 12, 1812 ± 18, 1725 ± 25 and 1580 ± 30 CE. A regional ocean hindcast links SCFR to enhanc…

Mediterranean climateMultidisciplinary010504 meteorology & atmospheric sciencesAtmospheric circulationEMT010502 geochemistry & geophysics01 natural sciencesArticleBottom waterEastern Mediterranean TransientMediterranean seaOceanographyPaleoceanography13. Climate actionPaleoceanographyNorth Atlantic oscillationAegean SeaAtlantic multidecadal oscillationMediterranean SeacirculationThermohaline circulation14. Life underwaterPaleoceanography; Mediterranean Sea; Eastern Mediterranean transientGeology0105 earth and related environmental sciencesScientific Reports
researchProduct

Pliocene sapropels in the northern Adriatic area: chronology and paleoenvironmental significance

1997

Abstract A detailed stratigraphic and paleoenvironmental study was carried out ona marine section from the Marecchia Valley in the Northern Apennines. The section consists predominantly of deep-water hemipelagic clays intercalated with 15 thick, laminated sapropels (M1–M15). Based on biostratigraphic (calcareous nannoplankton and planktonic foraminifera) and magnetostratigraphic results, the Marecchia Valley section is interpreted as being middle to late Pliocene in age, extending from the upper part of the Gauss Chron to the lower part of the Matuyama Chron. The high resolution stratigraphy allows us to correlate, for the first time, these northern Italian sapropels with sapropels previous…

Mediterranean climatePliocenebiologyStratigraphyPaleontologySapropelOceanographybiology.organism_classificationMediterranean region; Paleoclimatology; Pliocene; StratigraphyForaminiferaBottom waterPaleontologyStratigraphyBenthic zonePaleoclimatologyMediterranean regionPaleoclimatologyEcology Evolution Behavior and SystematicsGeologyEarth-Surface ProcessesChronologyPalaeogeography, Palaeoclimatology, Palaeoecology
researchProduct

Social Accounting

2013

Nonfinancial reportingCorporate social reportingTriple bottom line accountingSocial and environmental accountingSustainability accountingCorporate social responsibility reporting
researchProduct

First observation of a baryonic Bc+ decay

2014

A baryonic decay of the $B_c^+$ meson, $B_c^+\to J/\psi p\overline{p}\pi^+$, is observed for the first time, with a significance of $7.3$ standard deviations, in $pp$ collision data collected with the LHCb detector and corresponding to an integrated luminosity of $3.0$ fb$^{-1}$ taken at center-of-mass energies of $7$ and $8$ $\mathrm{TeV}$. With the $B_c^+\to J/\psi \pi^+$ decay as normalization channel, the ratio of branching fractions is measured to be \begin{equation*} \frac{\mathcal{B}(B_c^+\to J/\psi p\overline{p}\pi^+)}{\mathcal{B}(B_c^+\to J/\psi \pi^+)} = 0.143^{\,+\,0.039}_{\,-\,0.034}\,(\mathrm{stat})\pm0.013\,(\mathrm{syst}). \end{equation*} The mass of the $B_c^+$ meson is dete…

Nuclear TheoryAnalytical chemistryGeneral Physics and Astronomy01 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]TOOLFactorizationNuclear ExperimentQCPhysicsPhysicsParticle physics12.39.StPhysical SciencesComputer Science::Mathematical SoftwareFísica nuclearLHCMESONParticle Physics - ExperimentComputer Science::Machine LearningMeson530 Physics14.40.NdPhysics MultidisciplinaryFOS: Physical sciencesPhysics InstituteLHCb - Abteilung HofmannAstrophysics::Cosmology and Extragalactic AstrophysicsComputer Science::Digital LibrariesNONuclear physicsPhysics and Astronomy (all)Hadronic decays of bottom meson0103 physical sciencesPi010306 general physicsScience & Technology010308 nuclear & particles physicshep-exHigh Energy Physics::Phenomenologymeson; toolBaryonLHCb13.25.HwBottom mesons (|B|>0)High Energy Physics::ExperimentFísica de partículesExperiments
researchProduct

Precision Measurement of the Mass and Lifetime of the Ξ[0 over b] Baryon

2014

Using a proton-proton collision data sample corresponding to an integrated luminosity of 3 fb$^{-1}$ collected by LHCb at center-of-mass energies of 7 and 8 TeV, about 3800 $\Xi_b^0\to\Xi_c^+\pi^-$, $\Xi_c^+\to pK^-\pi^+$ signal decays are reconstructed. From this sample, the first measurement of the $\Xi_b^0$ baryon lifetime is made, relative to that of the $\Lambda_b^0$ baryon. The mass differences $M(\Xi_b^0)-M(\Lambda_b^0)$ and $M(\Xi_c^+)-M(\Lambda_c^+)$ are also measured with precision more than four times better than the current world averages. The resulting values are $\frac{\tau_{\Xi_b^0}}{\tau_{\Lambda_b^0}} = 1.006\pm0.018\pm0.010$, $M(\Xi_b^0) - M(\Lambda_b^0) = 172.44\pm0.39\pm…

Nuclear TheoryAnalytical chemistryGeneral Physics and Astronomyinclusive weak decays; discarding 1/N(C); beaty; charm; ruleLambdaHigh Energy Physics - Experimenthigh energy physicsSettore FIS/04 - Fisica Nucleare e Subnucleare[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]INCLUSIVE WEAK DECAYS; DISCARDING 1/N(C); BEAUTY; CHARM; RULENuclear ExperimentQCPhysicsprecision measurementPhysicsintegrated luminosityParticle physicsBEAUTYtransverse momentaPseudorapidityPhysical SciencesTransverse momentumINCLUSIVE WEAK DECAYSFísica nuclearLHC13.30.Egtellurium compoundsParticle Physics - Experiment530 PhysicsAstrophysics::High Energy Astrophysical PhenomenaPhysics MultidisciplinarypseudorapiditiesPhysics InstituteLHCb - Abteilung HofmannAstrophysics::Cosmology and Extragalactic AstrophysicsCHARMNuclear physicsPhysics and Astronomy (all)Pi14.20.MrScience & Technologycenter-of-mass energiesmass differencetransverse momenta; precision measurement; center-of-mass energies; tellurium compounds; production rates; pseudorapidities; high energy physics; integrated luminosity; hadrons; mass difference; proton proton collisionsDISCARDING 1/N(C)BaryonLHCbproton proton collisionshadronsHadronic decays of baryonBottom baryons (|B|>0)Physics::Accelerator Physicsproduction ratesFísica de partículesExperimentsRULE
researchProduct

Measurement of the B-0 -> K*(0) e(+) e(-) branching fraction at low dilepton mass

2013

The branching fraction of the rare decay B-0 -> K*(0) e(+) e(-) in the dilepton mass region from 30 to 1000 MeV/c(2) has been measured by the LHCb experiment, using pp collision data, corresponding to an integrated luminosity of 1.0 fb(-1), at a centre-of-mass energy of 7 TeV. The decay mode B-0 -> J/psi (e(+) e(-)) K*(0) is utilized as a normalization channel. The branching fraction B(B-0 -> K*(0) e(+) e(-)) is measured to be B(B-0 -> K*(0) e(+) e(-))(30-1000 MeV/c2) = (3.1(-0.8)(-0.3)(+0.9)(+0.2) +/- 0.2) x 10(-7) where the fi rst error is statistical, the second is systematic, and the third comes from the uncertainties on the B-0 -> J/K*(0) and J/psi -> e(+) e(-) branching fractions.

Nuclear and High Energy PhysicsParticle physicsB physicModels beyond the standard modelFlavour Changing Neutral CurrentsFOS: Physical sciencesHadrons01 natural sciencesDECAYSB physicsPartícules (Física nuclear)High Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareNeutral currentHigh Energy Physics - Experiment (hep-ex)Neutral currents0103 physical sciencesLeptonic semileptonic and radiative decays of bottom meson[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]TOOLDECAYS; TOOL010306 general physicsLarge Hadron Collider (France and Switzerland)QCPhysicsFlavour Changing Neutral CurrentHadron-Hadron Scattering010308 nuclear & particles physicsBranching fractionB physics; Branching fraction; Flavour Changing Neutral Currents; Hadron-Hadron Scattering; Rare decayHigh Energy Physics::PhenomenologyGran Col·lisionador d'Hadrons3. Good healthCromodinàmica quànticaFIS/01 - FISICA SPERIMENTALERare decayB physics; Branching fraction; Flavour Changing Neutral Currents; Hadron-Hadron Scattering; Rare decay; Nuclear and High Energy PhysicsBottom mesons (|B|>0); Leptonic semileptonic and radiative decays of bottom mesons; Neutral currents; Models beyond the standard modelLeptonic semileptonic and radiative decays of bottom mesonsBottom mesons (|B|>0)Branching fractionHigh Energy Physics::ExperimentFísica nuclearDECAYParticle Physics - ExperimentQuantum chromodynamics
researchProduct

Measurement of CP asymmetries in the decays B0 → K*0 μ+μ- and B+ → K+ μ+μ-

2014

The direct CP asymmetries of the decays B 0 → K *0 μ + μ − and B + → K + μ + μ − are measured using pp collision data corresponding to an integrated luminosity of 3.0 fb−1 collected with the LHCb detector. The respective control modes B 0 → J/ψK *0 and B + → J/ψK + are used to account for detection and production asymmetries. The measurements are made in several intervals of μ + μ − invariant mass squared, with the ϕ(1020) and charmonium resonance regions excluded. Under the hypothesis of zero CP asymmetry in the control modes, the average values of the asymmetries are ACP(B0→K∗0μ+μ−)=−0.035±0.024±0.003,ACP(B+→K+μ+μ−)=0.012±0.017±0.001, where the first uncertainties are statistical and the …

Nuclear and High Energy PhysicsParticle physicsB physicmedia_common.quotation_subject14.40.NdFlavour Changing Neutral CurrentsLHCb - Abteilung HofmannHadrons01 natural sciencesAsymmetryB physicsNOPhysics Particles & FieldsLuminosityStandard Model0103 physical sciencesLeptonic semileptonic and radiative decays of bottom mesonInvariant mass010306 general physicsLarge Hadron Collider (France and Switzerland)QCmedia_commonPhysicsFlavour Changing Neutral CurrentScience & TechnologyHadron-Hadron Scattering010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyGran Col·lisionador d'HadronsParticle physicsResonanceCharge conjugation parity time reversal and other discrete symmetrieLHCbCP violationRare decay13.20.HePhysical SciencesBottom mesons (|B|>0)11.30.ErFísica nuclearB physics; CP violation; Flavour Changing Neutral Currents; Hadron-Hadron Scattering; Rare decayProduction (computer science)High Energy Physics::ExperimentLHCFísica de partículesExperiments
researchProduct

Measurement of the Z$^0$ branching fraction to b quark pairs using the boosted sphericity product

1992

Abstract From a sample of about 120 000 hadronic Z 0 decays, using a technique based on a separation of the different event categories in the boosted sphericity product, the fraction of b b decays has been measured to be 0.219 ± 0.014 (stat)± 0.019 (syst). Using the DELPHI determination of the hadronic Z 0 width, this corresponds to a partial width τ b b = 378 ± 42 MeV (in good agreement with the standard model prediction of ∼-380 MeV). Combining this measurement with the determinations based on events with high p t leptons gives an estimate for the branching ratio of b into leptons at LEP of (11.2 ± 1.2)%, consistent with previous determinations.

Nuclear and High Energy PhysicsParticle physicsE+E ANNIHILATIONLUND MONTE-CARLOElectron–positron annihilationHadron01 natural sciencesBottom quarkJET FRAGMENTATIONDECAYSStandard ModelSphericityNuclear physicsPHYSICS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyProduct (mathematics)Física nuclearHigh Energy Physics::ExperimentLUND MONTE-CARLO; JET FRAGMENTATION; E+E ANNIHILATION; PHYSICS; DECAYSParticle Physics - ExperimentLepton
researchProduct

Search for di-muon decays of a low-mass Higgs boson in radiative decays of the Gamma(1S)

2013

We search for di-muon decays of a low-mass Higgs boson (A(0)) produced in radiative Gamma(1S) decays. The Gamma(1S) sample is selected by tagging the pion pair in the Gamma(2S, 3S) -> pi(+)pi(-) Gamma(1S) transitions, using a data sample of 92.8 x 10(6) Gamma(2S) and 116.8 x 10(6) Gamma(3S) events collected by the BABAR detector. We find no evidence for A(0) production and set 90% confidence level upper limits on the product branching fraction B(Gamma(1S) -> gamma Lambda(0)) x B(Lambda(0)->mu(+)mu(-)) in the range of (0.28 - 9.7) x 10(-6) for 0.212 gamma Lambda(0), Lambda(0) -> mu(+)mu(-) to set limits on the effective coupling of the b quark to the Lambda(0).

Nuclear and High Energy PhysicsParticle physicsElectron–positron annihilationAstrophysics::High Energy Astrophysical PhenomenaQuarkonium01 natural sciencesBottom quarkHigh Energy Physics - ExperimentNuclear physicsPion0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsPhysicsMuon010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyBABAR detectorQuarkoniumHEP3. Good healthPACS: 12.60.Fr 12.60.Jv 13.20.Gd 13.35.BvBaBarHiggs bosonLeptonic decaysFísica nuclearHigh Energy Physics::ExperimentMinimal Supersymmetric Standard Model
researchProduct

Study of radiative bottomonium transitions using converted photons

2011

We use 111+/-1 million Upsilon(3S) and 89+/-1 million Upsilon(2S) events recorded by the BaBar detector at the PEP-II B-factory at SLAC to perform a study of radiative transitions between bottomonium states using photons that have been converted to e+e- pairs by the detector material. We observe Upsilon(3S) -> gamma chi_b0,2(1P) decay, make precise measurements of the branching fractions for chi_b1,2(1P,2P) -> gamma Upsilon(1S) and chi_b1,2(2P) -> gamma Upsilon(2S) decays, and search for radiative decay to the eta_b(1S) and eta_b(2S) states.

Nuclear and High Energy PhysicsParticle physicsMesonElectron–positron annihilationHadronbottomoniumFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Particle decayBaBar detector at SLAC; radiative bottomonium transitions0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Radiative transfer010306 general physicsPACS: 13.20.Gd 14.40.PqPhysics010308 nuclear & particles physicsBranching fractionParticle physicsQuarkoniumHEPconverted photons3. Good healthbottomonium; converted photonsPair productionradiative bottomonium transitionsBaBarBaBar detector at SLACFísica de partículesExperimentsPhysical Review D
researchProduct