Search results for "boundary element"
showing 10 items of 171 documents
Structural Health Monitoring Procedure for Composite Structures through the use of Artificial Neural Networks
2015
In this paper different architectures of Artificial Neural Networks (ANNs) for structural damage detection are studied. The main objective is to investigate an ANN able to detect and localize damage without any prior knowledge on its characteristics so as to serve as a real-time data processor for Structural Health Monitoring (SHM) systems. Two different architectures are studied: the standard feed-forward Multi Layer Perceptron (MLP) and the Radial Basis Function (RBF) ANNs. The training data are given, in terms of a Damage Index ℑD, properly defined using a piezoelectric sensor signal output to obtain suitable information on the damage position and dimensions. The electromechanical respon…
Numerical Analysis of Piezoelectric Active Repair in the Presence of Frictional Contact Conditions
2013
The increasing development of smart materials, such as piezoelectric and shape memory alloys, has opened new opportunities for improving repair techniques. Particularly, active repairs, based on the converse piezoelectric effect, can increase the life of a structure by reducing the crack opening. A deep characterization of the electromechanical behavior of delaminated composite structures, actively repaired by piezoelectric patches, can be achieved by considering the adhesive layer between the host structure and the repair and by taking into account the frictional contact between the crack surfaces. In this paper, Boundary Element (BE) analyses performed on delaminated composite structures …
A boundary element model for structural health monitoring using piezoelectric transducers
2013
In this paper, for the first time, the boundary element method (BEM) is used for modelling smart structures instrumented with piezoelectric actuators and sensors. The host structure and its cracks are formulated with the 3D dual boundary element method (DBEM), and the modelling of the piezoelectric transducers implements a 3D semi-analytical finite element approach. The elastodynamic analysis of the structure is performed in the Laplace domain and the time history is obtained by inverse Laplace transform. The sensor signals obtained from BEM simulations show excellent agreement with those from finite element modelling simulations and experiments. This work provides an alternative methodolog…
Structural Health Monitoring of Cracked Beam by the Dual Reciprocity Boundary Element Method
2012
In this paper a 2D boundary element model is used to characterize the transient response of a piezoelectric based structural health monitoring system for cracked beam. The BE model is written for piezoelectric non-homogeneous problem employing generalized displacements. The dual reciprocity method is used to write the mass matrix in terms of boundary parameters only. The multidomain boundary element technique is implemented to model non-homogeneous and cracked configuration, unilateral interface conditions are also considered to prevent the physical inconsistence of the overlapping between interface nodes belonging to the crack surfaces. To assess the reliability and the effectiveness of th…
On the dynamic behavior of piezoelectric active repair by the boundary element method
2011
The dynamic behavior of piezoelectric active repair bonded on cracked structures is analyzed in this article. The boundary element code used to perform the simulations is implemented in the framework of piezoelectricity in order to model the coupling between the elastic and the electric fields, which represents the most important feature of piezoelectric media. The fracture mechanics problem, i.e. the crack, as well as the bonding layer between the host structure and the active patch is modeled by means of the multidomain technique provided with an interface spring model. More particularly, the spring interface model allows considering the bonding layer as a zero-thickness elastic ply char…
Hierarchical fast BEM for anisotropic time-harmonic 3-D elastodynamics
2012
The paper presents a fast boundary element method for anisotropic time-harmonic 3-D elastodynamic problems. The approach uses the hierarchical matrices format and the ACA algorithm for the collocation matrix setup and a preconditioned GMRES solver for the solution. The development of this approach for the anisotropic case presents peculiar aspects which deserve investigation and are studied in the paper leading to the employed computational strategy and its effective tuning. Numerical experiments are presented to assess the method accuracy, performances and numerical complexity. The method ensures adequate accuracy allowing remarkable reductions in computation time and memory storage.
Micro damage and cracking in fibre reinforced composites by a novel hybrid numerical technique
2020
Article number 0033974 AIP Incluida en Conference Proceedings 2309 The prediction of failure mechanisms in fibre-reinforced composite materials is of great importance for the design of composite engineering applications. With the aim of providing a tool able to predict and explain the initiation and propagation of damage in unidirectional fiber reinforced composites, in this contribution we develop a micromechanical numerical model based on a novel hybrid approach coupling the virtual element method (VEM) and the boundary element method (BEM). The BEM is a popular numerical technique, efficient and accurate, which has been successfully applied to interfacial fracture mechanics problems of f…
A symmetric Galerkin boundary/domain element method for finite elastic deformations
2000
Abstract The Symmetric Galerkin Boundary Element Method (SGBEM) is reformulated for problems of finite elasticity with hyperelastic material and incompressibility, using fundamental solutions related to a (fictitious) homogeneous isotropic and compressible linear elastic material. The proposed formulation contains, besides the standard boundary integrals, domain integrals which account for the problem's nonlinearities through some (fictitious) initial strain and stress fields required to satisfy appropriate “consistency” equations. The boundary/domain integral equation problem so obtained is shown to admit a stationarity principle (a consequence of the Hu-Washizu one), which covers a number…
Boundary/Field Variational Principles for the Elastic Plastic Rate Problem
1991
An elastic-plastic continuous solid body under quasi-statically variable external actions is herein addressed in the hypoteses of rate-independent material model with dual internal variables and of infinitesimal displacements and strains. The related analysis problem for assigned rate actions is first formulated through a boundary/field integral equation approach, then is shown to be characterized by two variational principles, one of which is a stationarity theorem, the other a min-max one.
BEM application on an external problem comparison with both theoretical and finite elements results and observations on divergence strip
1992
Abstract By means of a computer program the Boundary Element Method is applied to a central hole in an undefined plate with uniform load along the boundary. Results are compared with those obtained by Kirsch's theoretical solution and a previous analysis by the Finite Element Method. The calculus of percentage error shows the advantage of the Boundary Element Method on the external problem with regard to the Finite Element Method. The error causes near the boundary internal points are analysed with the existence of a strip, where the result is not reliable in evidence.