Search results for "boundary value problems"
showing 6 items of 16 documents
Stability of the Calderón problem in admissible geometries
2014
In this paper we prove log log type stability estimates for inverse boundary value problems on admissible Riemannian manifolds of dimension n ≥ 3. The stability estimates correspond to the uniqueness results in [13]. These inverse problems arise naturally when studying the anisotropic Calderon problem. peerReviewed
Morse-Smale index theorems for elliptic boundary deformation problems.
2012
AbstractMorse-type index theorems for self-adjoint elliptic second order boundary value problems arise as the second variation of an energy functional corresponding to some variational problem. The celebrated Morse index theorem establishes a precise relation between the Morse index of a geodesic (as critical point of the geodesic action functional) and the number of conjugate points along the curve. Generalization of this theorem to linear elliptic boundary value problems appeared since seventies. (See, for instance, Smale (1965) [12], Uhlenbeck (1973) [15] and Simons (1968) [11] among others.) The aim of this paper is to prove a Morse–Smale index theorem for a second order self-adjoint el…
Green’s function and existence of solutions for a third-order three-point boundary value problem
2019
The solutions of third-order three-point boundary value problem x‘‘‘ + f(t, x) = 0, t ∈ [a, b], x(a) = x‘(a) = 0, x(b) = kx(η), where η ∈ (a, b), k ∈ R, f ∈ C([a, b] × R, R) and f(t, 0) ≠ 0, are the subject of this investigation. In order to establish existence and uniqueness results for the solutions, attention is focused on applications of the corresponding Green’s function. As an application, also one example is given to illustrate the result. Keywords: Green’s function, nonlinear boundary value problems, three-point boundary conditions, existence and uniqueness of solutions.
Existence of a unique solution for a third-order boundary value problem with nonlocal conditions of integral type
2021
The existence of a unique solution for a third-order boundary value problem with integral condition is proved in several ways. The main tools in the proofs are the Banach fixed point theorem and the Rus’s fixed point theorem. To compare the applicability of the obtained results, some examples are considered.
Estimates of the modeling error generated by homogenization of an elliptic boundary value problem
2016
Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)
Generalized wave propagation problems and discrete exterior calculus
2018
We introduce a general class of second-order boundary value problems unifying application areas such as acoustics, electromagnetism, elastodynamics, quantum mechanics, and so on, into a single framework. This also enables us to solve wave propagation problems very efficiently with a single software system. The solution method precisely follows the conservation laws in finite-dimensional systems, whereas the constitutive relations are imposed approximately. We employ discrete exterior calculus for the spatial discretization, use natural crystal structures for three-dimensional meshing, and derive a “discrete Hodge” adapted to harmonic wave. The numerical experiments indicate that the cumulat…