Search results for "brightness"

showing 10 items of 162 documents

2018

Abstract. Detailed measurements of radiation, atmospheric and aerosol properties were carried out in summer 2013 during the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) campaign in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) experiment. This study focusses on the characterization of infrared (IR) optical properties and direct radiative effects of mineral dust, based on three vertical profiles of atmospheric and aerosol properties and IR broadband and narrowband radiation from airborne measurements, made in conjunction with radiosonde and ground-based observations at Lampedusa, in the central Mediterranean. Satell…

Atmospheric Science010504 meteorology & atmospheric sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsRadiative forcingMineral dustAtmospheric sciences01 natural sciencesAerosolAERONET010309 opticsAtmospheric radiative transfer codes13. Climate actionBrightness temperature0103 physical sciencesRadiative transferAstrophysics::Solar and Stellar AstrophysicsEnvironmental scienceAstrophysics::Earth and Planetary AstrophysicsPhysics::Atmospheric and Oceanic PhysicsAstrophysics::Galaxy AstrophysicsZenith0105 earth and related environmental sciencesRemote sensingAtmospheric Chemistry and Physics
researchProduct

Temperature-based and radiance-based validations of the V5 MODIS land surface temperature product

2009

[1] The V5 level 2 land surface temperature (LST) product of the Moderate Resolution Imaging Spectroradiometer (MODIS) was validated over homogeneous rice fields in Valencia, Spain, and the Hainich forest in Germany. For the Valencia site, ground LST measurements were compared with the MOD11_L2 product in the conventional temperature-based (T-based) method. We also applied the alternative radiance-based (R-based) method, with in situ LSTs calculated from brightness temperatures in band 31 through radiative transfer simulations using temperature and water vapor profiles and surface emissivity data. At the Valencia site, profiles were obtained from local radiosonde measurements and from Natio…

Atmospheric ScienceAccuracy and precisionEcologyPaleontologySoil ScienceForestryAquatic ScienceOceanographyStandard deviationlaw.inventionDepth soundingGeophysicsSpace and Planetary ScienceGeochemistry and PetrologylawBrightness temperatureEarth and Planetary Sciences (miscellaneous)EmissivityRadiosondeRadianceEnvironmental scienceModerate-resolution imaging spectroradiometerEarth-Surface ProcessesWater Science and TechnologyRemote sensingJournal of Geophysical Research
researchProduct

A spatially consistent downscaling approach for SMOS using an adaptive window

2017

The European Space Agency (ESA)'s Soil Moisture and Ocean Salinity (SMOS) is the first spaceborne mission using L-band radiometry to monitor the Earth's global surface soil moisture (SM). After more than 7 years in orbit, many studies have contributed to improve the quality and applicability of SMOS-derived SM maps. In this research, a novel downscaling algorithm for SMOS is proposed to obtain high-resolution (HR) SM maps at 1 km (L4), from the ∼40 km native resolution of the instrument. This algorithm introduces the concept of a shape adaptive moving window as an improvement of the current semi-empirical downscaling approach at SMOS Barcelona Expert Center, based on the “universal triangle…

Atmospheric ScienceBrightnessTeledeteccióMean squared error010504 meteorology & atmospheric sciencesREMEDHUS0211 other engineering and technologiesHigh resolution02 engineering and technology01 natural sciencesNormalized Difference Vegetation IndexBECComputers in Earth SciencesImage resolution021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingNative resolutionAdaptive moving windowLow resolutionMoving windowRemote sensing:Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Teledetecció [Àrees temàtiques de la UPC]Orbit (dynamics)RadiometryEnvironmental scienceSpatial variabilitySoil moistureSòls -- HumitatDownscalingSMOS
researchProduct

Validation of Landsat-7/ETM+ Thermal-Band Calibration and Atmospheric Correction With Ground-Based Measurements

2010

Ground-based measurements of land-surface temperature (LST) performed in a homogeneous site of rice crops close to Valencia, Spain, were used for the validation of the calibration and the atmospheric correction of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) thermal band. Atmospheric radiosondes were launched at the test site around the satellite overpasses. Field-emissivity measurements of the near-full-vegetated rice crops were also performed. Seven concurrences of Landsat-7 and ground data were obtained in July and August 2004-2007. The ground measurements were used with the MODTRAN-4 radiative transfer model to simulate at-sensor radiances and brightness temperatures, which were c…

Atmospheric correctionAtmospheric modellaw.inventionAtmospheric radiative transfer codeslawThematic MapperBrightness temperatureRadiosondeCalibrationRadianceGeneral Earth and Planetary SciencesEnvironmental scienceElectrical and Electronic EngineeringRemote sensingIEEE Transactions on Geoscience and Remote Sensing
researchProduct

Comparison of Split-Window and Single-Channel Methods for Land Surface Temperature Retrieval from MODIS and AATSR Data

2008

In this study, two different methods for retrieving the Land Surface Temperature (LST) from Terra/Moderate Resolution Imaging Spectroradiometer (MODIS) and Envisat/Advanced Along Track Scanning Radiometer (AATSR) data are compared against a database of ground measured LSTs. These are the split-window (SW) and the single-channel (SC) methods. The SW method expresses LST as a combination of the brightness temperatures in the 11 iquestm and 12 iquestm channels with coefficients that can have local or global validity, depending on the way they are obtained. SC methods are based on the atmospheric radiative transfer equation. To solve this equation, convenient atmospheric temperature and water v…

Atmospheric radiative transfer codesRadiometerMeteorologyBrightness temperatureRadiative transferEnvironmental scienceAATSRAtmospheric modelModerate-resolution imaging spectroradiometerAtmospheric temperatureRemote sensingIGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Experimental system for the study of the directional thermal emission of natural surfaces

2004

A new automatic experimental system was designed to improve the accuracy of multidirectional thermal infrared measurements. This experimental system mainly consists of two identical thermal cameras operating at 8-13 mu m, one metal ring to keep the constant view area for different view angles and a goniometer, which is composed of: (1) a semicircular roadway of 2 m diameter to change the observation angle in the azimuth direction; (2) an elevator of 1 m height to adjust the measuring level to the target level; (3) a rotating arm equipped with one thermal camera for changing the observation angle in the zenith direction; and (4) a fixed arm equipped with another thermal camera to record at n…

AzimuthOpticsData acquisitionMaterials sciencebusiness.industryBrightness temperatureInstrumentationGoniometerThermalNadirGeneral Earth and Planetary SciencesbusinessZenithInternational Journal of Remote Sensing
researchProduct

ARES I: WASP-76 b, A Tale of Two HST Spectra

2020

We analyse the transmission and emission spectra of the ultra-hot Jupiter WASP-76b, observed with the G141 grism of the Hubble Space Telescope's Wide Field Camera 3 (WFC3). We reduce and fit the raw data for each observation using the open-source software Iraclis before performing a fully Bayesian retrieval using the publicly available analysis suite TauRex 3. Previous studies of the WFC3 transmission spectra of WASP-76 b found hints of titanium oxide (TiO) and vanadium oxide (VO) or non-grey clouds. Accounting for a fainter stellar companion to WASP-76, we reanalyse this data and show that removing the effects of this background star changes the slope of the spectrum, resulting in these vi…

Brightness010504 meteorology & atmospheric sciencesExoplanet atmospheres; Exoplanet atmospheric composition; Hubble Space Telescope; Astrophysics - Earth and Planetary AstrophysicsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAstronomy & AstrophysicsExoplanet atmospheres; Exoplanet atmospheric composition; Hubble Space Telescope01 natural sciencesSpectral lineAtmosphereJupiterHAT-P-7B0103 physical sciencesHubble Space TelescopeAstrophysics::Solar and Stellar AstrophysicsEmission spectrumMOLECULAR LINE LISTS010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesHOTPhysicsEarth and Planetary Astrophysics (astro-ph.EP)Science & TechnologyAstronomy and AstrophysicsATMOSPHEREGIANT EXOPLANETGrismRESOLUTIONTransmission (telecommunications)Exoplanet atmospheric composition13. Climate actionSpace and Planetary Science[SDU]Sciences of the Universe [physics]Physical SciencesINFERENCEAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Wide Field Camera 3STARSExoplanet atmospheresAstrophysics - Earth and Planetary Astrophysics
researchProduct

First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole

2019

We present the first Event Horizon Telescope (EHT) images of M87, using observations from April 2017 at 1.3 mm wavelength. These images show a prominent ring with a diameter of ~40 μas, consistent with the size and shape of the lensed photon orbit encircling the "shadow" of a supermassive black hole. The ring is persistent across four observing nights and shows enhanced brightness in the south. To assess the reliability of these results, we implemented a two-stage imaging procedure. In the first stage, four teams, each blind to the others' work, produced images of M87 using both an established method (CLEAN) and a newer technique (regularized maximum likelihood). This stage allowed us to av…

Brightness010504 meteorology & atmospheric sciencesgalaxies: jetAstronomyblack hole physicsFOS: Physical sciencesgalaxies: individualtechniques: image processingAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)galaxies: individual: M8701 natural sciencesSynthetic dataGeneral Relativity and Quantum Cosmologygalaxies: individual (M87)0103 physical sciencesimage processing [Techniques]010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)0105 earth and related environmental sciencesEvent Horizon TelescopePhysicsGround truthSupermassive black holetechniques: high angular resolutionAstronomy and AstrophysicsBlack hole physicsgalaxies: jetsindividual (M87) [Galaxies]Astrophysics - Astrophysics of Galaxiesblack hole physic3. Good healthOrbitInterferometryhigh angular resolution [Techniques]Space and Planetary Sciencetechniques: interferometricAstrophysics of Galaxies (astro-ph.GA)interferometric [Techniques]jets [Galaxies]Deconvolution[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Instrumentation and Methods for Astrophysics
researchProduct

The Second Flight of the Sunrise Balloon-borne Solar Observatory: Overview of Instrument Updates, the Flight, the Data, and First Results

2017

S. K. Solanki et. al.

Brightness010504 meteorology & atmospheric sciencesphotosphere [Sun]PolarimetryFOS: Physical scienceschromosphere [Sun]Sun: faculae plagesAstrophysicspolarimetric [Techniques]01 natural scienceslaw.inventionTelescopelaw0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsSunrisefaculae plages [Sun]Sun: magnetic fields010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsPhotosphereSolar observatorySunspotsSun: chromosphereTechniques: polarimetricSun: photosphereAstronomy and AstrophysicsPolarimeterAstrophysics - Solar and Stellar Astrophysicsmagnetic fields [Sun]Space and Planetary ScienceData reductionThe Astrophysical Journal Supplement Series
researchProduct

Monitoring the Morphology of M87* in 2009-2017 with the Event Horizon Telescope

2020

All authors: Wielgus, Maciek; Akiyama, Kazunori; Blackburn, Lindy; Chan, Chi-kwan; Dexter, Jason; Doeleman, Sheperd S.; Fish, Vincent L.; Issaoun, Sara; Johnson, Michael D.; Krichbaum, Thomas P.; Lu, Ru-Sen; Pesce, Dominic W.; Wong, George N.; Bower, Geoffrey C.; Broderick, Avery E.; Chael, Andrew; Chatterjee, Koushik; Gammie, Charles F.; Georgiev, Boris; Hada, Kazuhiro Loinard, Laurent; Markoff, Sera; Marrone, Daniel P.; Plambeck, Richard; Weintroub, Jonathan; Dexter, Matthew; MacMahon, David H. E.; Wright, Melvyn; Alberdi, Antxon; Alef, Walter; Asada, Keiichi; Azulay, Rebecca; Baczko, Anne-Kathrin; Ball, David; Baloković, Mislav; Barausse, Enrico; Barrett, John; Bintley, Dan; Boland, Wilf…

Brightness1663Active galactic nucleus010504 meteorology & atmospheric sciences1346Event horizonAstronomyAstrophysics::High Energy Astrophysical PhenomenaGalaxy accretion disksFOS: Physical sciencesAstrophysicsF500Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences5752033Settore FIS/05 - Astronomia e AstrofisicaSupermassive black holes0103 physical sciencesVery-long-baseline interferometryAstronomy Astrophysics and Cosmology1769010303 astronomy & astrophysicsComputer Vision and Robotics (Autonomous Systems)Astronomy data modelingVery long baseline interferometry0105 earth and related environmental sciences162Black holes; Galaxy accretion disks; Galaxy accretion; Supermassive black holes; Active galactic nuclei; Low-luminosity active galactic nuclei; Very long baseline interferometry; Astronomy data modeling; Radio interferometryEvent Horizon TelescopePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Active galactic nucleiSupermassive black holeBlack holesAstronomy and Astrophysics16Galaxy accretion562Position angleGalaxyLow-luminosity active galactic nucleiMedical Image ProcessingSpace and Planetary ScienceRadio interferometryAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]1859
researchProduct