Search results for "brownian motion"
showing 10 items of 177 documents
Analysis of random walks on a hexagonal lattice
2019
We consider a discrete-time random walk on the nodes of an unbounded hexagonal lattice. We determine the probability generating functions, the transition probabilities and the relevant moments. The convergence of the stochastic process to a 2-dimensional Brownian motion is also discussed. Furthermore, we obtain some results on its asymptotic behavior making use of large deviation theory. Finally, we investigate the first-passage-time problem of the random walk through a vertical straight-line. Under suitable symmetry assumptions we are able to determine the first-passage-time probabilities in a closed form, which deserve interest in applied fields.
Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion
2021
In this article, we propose a test of the dynamics of stock market indexes typical of the US and EU capital markets in order to determine which of the two fundamental hypotheses, efficient market hypothesis (EMH) or fractal market hypothesis (FMH), best describes market behavior. The article’s major goal is to show how to appropriately model return distributions for financial market indexes, specifically which geometric Brownian motion (GBM) and geometric fractional Brownian motion (GFBM) dynamic equations best define the evolution of the S&P 500 and Stoxx Europe 600 stock indexes. Daily stock index data were acquired from the Thomson Reuters Eikon database during a ten-year period, fro…
Isotropic stochastic flow of homeomorphisms on Sd for the critical Sobolev exponent
2006
Abstract In this work, we shall deal with the critical Sobolev isotropic Brownian flows on the sphere S d . Based on previous works by O. Raimond and LeJan and Raimond (see [O. Raimond, Ann. Inst. H. Poincare 35 (1999) 313–354] and [Y. LeJan, O. Raimond, Ann. of Prob. 30 (2002) 826–873], we prove that the associated flows are flows of homeomorphisms.
Circuits and excitations to enable Brownian token-based computing with skyrmions
2021
Brownian computing exploits thermal motion of discrete signal carriers (tokens) for computations. In this paper we address two major challenges that hinder competitive realizations of circuits and application of Brownian token-based computing in actual devices for instance based on magnetic skyrmions. To overcome the problem that crossings generate for the fabrication of circuits, we design a crossing-free layout for a composite half-adder module. This layout greatly simplifies experimental implementations as wire crossings are effectively avoided. Additionally, our design is shorter to speed up computations compared to conventional designs. To address the key issue of slow computation base…
Statistical correlation of fractional oscillator response by complex spectral moments and state variable expansion
2016
Abstract The statistical characterization of the oscillator response with non-integer order damping under Gaussian noise represents an important challenge in the modern stochastic mechanics. In fact, this kind of problem appears in several issues of different type (wave propagation in viscoelastic media, Brownian motion, fluid dynamics, RLC circuit, etc.). The aim of this paper is to provide a stochastic characterization of the stationary response of linear fractional oscillator forced by normal white noise. In particular, this paper shows a new method to obtain the correlation function by exact complex spectral moments. These complex quantities contain all the information to describe the r…
Stability measures in metastable states with Gaussian colored noise
2009
We present a study of the escape time from a metastable state of an overdamped Brownian particle, in the presence of colored noise generated by Ornstein-Uhlenbeck process. We analyze the role of the correlation time on the enhancement of the mean first passage time through a potential barrier and on the behavior of the mean growth rate coefficient as a function of the noise intensity. We observe the noise enhanced stability effect for all the initial unstable states used, and for all values of the correlation time $\tau_c$ investigated. We can distinguish two dynamical regimes characterized by weak and strong correlated noise respectively, depending on the value of $\tau_c$ with respect to …
Exact Results for Spectra of Overdamped Brownian Motion in Fixed and Randomly Switching Potentials
2004
The exact formulae for spectra of equilibrium diffusion in a fixed bistable piecewise linear potential and in a randomly flipping monostable potential are derived. Our results are valid for arbitrary intensity of driving white Gaussian noise and arbitrary parameters of potential profiles. We find: (i) an exponentially rapid narrowing of the spectrum with increasing height of the potential barrier, for fixed bistable potential; (ii) a nonlinear phenomenon, which manifests in the narrowing of the spectrum with increasing mean rate of flippings, and (iii) a nonmonotonic behaviour of the spectrum at zero frequency, as a function of the mean rate of switchings, for randomly switching potential. …
Signatures of noise-enhanced stability in metastable state
2005
The lifetime of a metastable state in the transient dynamics of an overdamped Brownian particle is analyzed, both in terms of the mean first passage time and by means of the mean growth rate coefficient. Both quantities feature non monotonic behaviors as a function of the noise intensity, and are independent signatures of the noise enhanced stability effect. They can therefore be alternatively used to evaluate and estimate the presence of this phenomenon, which characterizes metastability in nonlinear physical systems.
Hunting active Brownian particles: Learning optimal behavior
2021
We numerically study active Brownian particles that can respond to environmental cues through a small set of actions (switching their motility and turning left or right with respect to some direction) which are motivated by recent experiments with colloidal self-propelled Janus particles. We employ reinforcement learning to find optimal mappings between the state of particles and these actions. Specifically, we first consider a predator-prey situation in which prey particles try to avoid a predator. Using as reward the squared distance from the predator, we discuss the merits of three state-action sets and show that turning away from the predator is the most successful strategy. We then rem…
Statistical distributions for hamiltonian systems coupled to energy reservoirs and applications to molecular energy conversion
2008
We study systems with Hamiltonian dynamics type coupled to reservoirs providing free energy which may be converted into acceleration. In the first part we introduce general concepts, like canonical dissipative systems and find exact solutions of associated Fokker–Planck equations that describe time evolutions of systems at hand. Next we analyze dynamics in ratchets with energy support which might be treated by perturbation theory around canonical dissipative systems. Finally we discuss possible applications of these ratchet systems to model the mechanism of biological energy conversion and molecular motors.