Search results for "bundle"
showing 10 items of 257 documents
Quasi-Modes and Spectral Instability in One Dimension
2019
In this section we describe the general WKB construction of approximate “asymptotic” solutions to the ordinary differential equation $$\displaystyle P(x,hD_x)u=\sum _{k=0}^m b_k(x)(hD_x)^ku=0, $$ on an interval α < x < β, where we assume that the coefficients bk ∈ C∞(]α, β[). Here h ∈ ]0, h0] is a small parameter and we wish to solve (above equation) up to any power of h. We look for u in the form $$\displaystyle u(x;h)=a(x;h)e^{i\phi (x)/h}, $$ where ϕ ∈ C∞(]α, β[) is independent of h. The exponential factor describes the oscillations of u, and when ϕ is complex valued it also describes the exponential growth or decay; a(x;h) is the amplitude and should be of the form $$\displaystyle a(x;h…
The “Maslov Anomaly” for the Harmonic Oscillator
2001
Specializing the discussion of the previous section to the harmonic oscillator we have for \(N = 1,\ \eta ^{a} = (p,x),\ a = 1,2,\ \eta ^{1} \equiv p,\ \eta ^{2} \equiv x\) $$\displaystyle{ H(p,x) = \frac{1} {2}\eta ^{a}\eta ^{a} = \frac{1} {2}{\bigl (p^{2} + x^{2}\bigr )}\;. }$$ (30.1) The only conserved quantity is J = H. In the action we need the combination $$\displaystyle{ \frac{1} {2}\eta ^{a}\omega _{ ab}\dot{\eta }^{b} -\mathcal{H}(\eta ) = \frac{1} {2}\eta ^{a}\left [\omega _{ ab} \frac{d} {dt} -{\bigl ( 1 + A(t)\bigr )}\mathrm{1l}_{ab}\right ]\eta ^{b} }$$ (30.2) and $$\displaystyle{ \tilde{M}_{\phantom{a}b}^{a} =\omega ^{ac}\partial _{ c}\partial _{b}(H + AJ\,) ={\bigl ( 1 + A(t)…
Berry Phase and Parametric Harmonic Oscillator
2001
Our concern in this section is once more with the time-dependent harmonic oscillator with Lagrangian $$\displaystyle{ L = \frac{1} {2}\dot{x}^{2} -\frac{1} {2}\omega ^{2}(t)x^{2}\;. }$$ To present a coherent picture of the whole problem, let us briefly review some of the results of Chap. 21. There we found the propagation function
Tomita—Takesaki Theory in Partial O*-Algebras
2002
This chapter is devoted to the development of the Tomita-Takesaki theory in partial O*-algebras. In Section 5.1, we introduce and investigate the notion of cyclic generalized vectors for a partial O*-algebra, generalizing that of cyclic vectors, and its commutants. Section 5.2 introduces the notion of a cyclic and separating system (M, λ, λ c ), which consists of a partial O*-algebra M, a cyclic generalized vector λ for M and the commutant λ c of λ. A cyclic and separating system (M, λ, λ c ) determines the cyclic and separating system ((M w ′ )′, λ cc , (λ cc ) c ) of the von Neumann algebra (M w ′ )′, and this makes it possible to develop the Tornita-Takesaki theory. Then λ can be extende…
Families of Two-dimensional Vector Fields
1998
In this section we will consider individual vector fields. They can be considered as 0-parameter families. We assume these vector fields to be of class at least C 1. This will be sufficient to ensure the existence and uniqueness of the flow φ(t, x) (t is time, x ∈ S, the phase space) and the qualitative properties which we mention below.
Distribution of Eigenvalues for Semi-classical Elliptic Operators with Small Random Perturbations, Results and Outline
2019
In this chapter we will state a result asserting that for elliptic semi-classical (pseudo-)differential operators the eigenvalues are distributed according to Weyl’s law “most of the time” in a probabilistic sense. The first three sections are devoted to the formulation of the results and in the last section we give an outline of the proof that will be carried out in Chaps. 16 and 17.
Bifurcations of Regular Limit Periodic Sets
1998
In this chapter, (X λ ) will be a smooth or analytic (in Section 3) family of vector fields on a phase space S, with parameter λ ∈ P, as in Chapter 1. Periodic orbits and elliptic singular points which are limits of sequences of limit cycles are called regular limit periodic sets. The reason for this terminology is that for such a limit periodic set Γ one can define local return maps on transversal segments, which are as smooth as the family itself. The limit cycles near Γ will be given by a smooth equation and the theory of bifurcations of limit cycles from Γ will reduce to the theory of unfoldings of differentiable functions. In fact, we will just need the Preparation Theorem and not the …
Invariants of equivariant algebraic vector bundles and inequalities for dominant weights
1998
Steady-state radiation heat transfer problem
1996
In Section 8.2, we shall see that the steady-state radiative heat transfer problem can be transformed to minimization of a smooth nonquadratic functional J over a convex and closed subset of a Banach space V. To this end we firstly shortly recall some basic definitions concerning differentiability of J, because these sometimes differ in the literature.
An Approach to a Version of the S(M, g)-pseudo-differential Calculus on Manifolds
2003
For appropriate triples (M,g,M), where M is an (in general non-compact) manifold, g is a metric on T* M, and M is a weight function on T* M, we develop a pseudo-differential calculus on.A4 which is based on the S(M,g))-calculus of L. Hormander [27] in local models. In order to do so, we generalize the concept of E. Schrohe [41] of so-called SG-compatible manifolds. In the final section we give an outlook onto topological properties of the algebras of pseudo-differential operators. We state the existence of “order reducing operators” and that the algebra of operators of order zero is a submultiplicative Ψ*-algebra in the sense of B. Gramsch [18] in \( \mathcal{L}\left( {{L^2}\left( M \right)…