Search results for "calorimeter"
showing 10 items of 197 documents
The ATLAS Level-1 Calorimeter Trigger: PreProcessor implementation and performance
2012
The PreProcessor system of the ATLAS Level-1 Calorimeter Trigger (L1Calo) receives about 7200 analogue signals from the electromagnetic and hadronic components of the calorimetric detector system. Lateral division results in cells which are pre-summed to so-called Trigger Towers of size 0.1 × 0.1 along azimuth (phi) and pseudorapidity (η). The received calorimeter signals represent deposits of transverse energy. The system consists of 124 individual PreProcessor modules that digitise the input signals for each LHC collision, and provide energy and timing information to the digital processors of the L1Calo system, which identify physics objects forming much of the basis for the full ATLAS fi…
A high precision calorimeter for hunting the sterile neutrino in the SOX experiment
2019
Abstract A thermal calorimetric apparatus was designed, built and calibrated for measuring the activity of the artificial 144 Ce —144 Pr antineutrino source. This measurement will be performed at the Laboratori Nazionali del Gran Sasso in Italy, just before the source insertion in the tunnel under the Borexino detector and a precision better than 1% is required for a disappearance technique measurement in the SOX (Short distance neutrino Oscillation with BoreXino) project. In this work the apparatus is described and the most important results from the calibration measurements are shown, where the final precision of few per thousand is demonstrated.
Pre-production validation of the ATLAS level-1 calorimeter trigger system
2006
The Level-1 Calorimeter Trigger is a major part of the first stage of event selection for the ATLAS experiment at the LHC. It is a digital, pipelined system with several stages of processing, largely based on FPGAs, which perform programmable algorithms in parallel with a fixed latency to process about 300 Gbyte/s of input data. The real-time output consists of counts of different types of trigger objects and energy sums. Prototypes of all module types have been undergoing intensive testing before final production during 2005. Verification of their correct operation has been performed stand-alone and in the ATLAS test-beam at CERN. Results from these investigations will be presented, along …
Search for the exotic Θ+ resonance in the NOMAD experiment
2006
12 pages, 16 figures.-- PACS nrs.: 13.15.+g; 13.60.Le; 13.87.Fh; 14.40.Ev.-- ISI Article Identifier: 000243973100007.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-ex/0612063.-- et al.
First data with the ATLAS Level-1 Calorimeter Trigger
2008
The ATLAS Level-1 Calorimeter Trigger is one of the main elements of the first stage of event selection for the ATLAS experiment at the LHC. The input stage consists of a mixed analogue/digital component taking trigger sums from the ATLAS calorimeters. The trigger logic is performed in a digital, pipelined system with several stages of processing, largely based on FPGAs, which perform programmable algorithms in parallel with a fixed latency to process about 300 Gbyte/s of input data. The real-time output consists of counts of different types of physics objects, and energy sums. The final system consists of over 300 custom-built VME modules, of several different types. The installation at AT…
ATLAS tile calorimeter data quality assessment with commissioning data
2008
TileCal is the barrel hadronic calorimeter of the ATLAS experiment presently in an advanced state of installation and commissioning at the LHC accelerator. The complexity of the experiment, the number of electronics channels and the high rate of acquired events requires a detailed commissioning of the detector, during the installation phase of the experiment and in the early life of ATLAS, to verify the correct behaviour of the hardware and software systems. This is done through the acquisition, monitoring, reconstruction and validation of calibration signals as well as processing data obtained with cosmic ray muons. To assess the detector status and verify its performance a set of tools ha…
Construction, Commissioning and First Results of a Highly Granular Hadron Calorimeter with SiPM-on-Tile Read-out
2018
The CALICE collaboration is developing a highly granular Analogue Hadron sampling CALorimeter (AHCAL) for a future electron-positron collider. Very small detection units are required for the AHCAL due to an optimized design for the Particle Flow Algorithm. This is realized with scintillator tiles each wrapped in reflector foil and individually read out by a silicon photomultiplier (SiPM). These scintillator tiles and SiPMs are assembled on readout boards (HCAL Base Unit, HBU) which are integrated later on in the AHCAL detector stack. With this design a higher energy resolution is achievable, but also a large quantity of components (around 8,000,000 scintillator tiles and SiPMs) are needed t…
Astrophysics and spectroscopy with microcalorimeters on an electron beam ion trap
2003
The importance of the combination of electron beam ion trap (EBIT) spectroscopy with X-ray microcalorimeters in the field of astrophysics was discussed. X-ray astronomy involves heavily charged ion instruments , especially EBIT, to obtain improved quality atomic data. In this regard, the research program at the National Institute of Standards and Technology, which uses X-ray spectroscopic methods to study plasma and atomic physics, was also discussed.
Commissioning of the CALIFA Barrel Calorimeter of the R3B Experiment at FAIR
2020
5 pags., 4 figs. -- FAIRNESS2019: FAIR NExt generation ScientistS 20-24 May 2019, Arenzano, Genova, Italy
In-flight performance of the DAMPE silicon tracker
2018
Abstract DAMPE (DArk Matter Particle Explorer) is a spaceborne high-energy cosmic ray and gamma-ray detector , successfully launched in December 2015. It is designed to probe astroparticle physics in the broad energy range from few GeV to 100 TeV. The scientific goals of DAMPE include the identification of possible signatures of Dark Matter annihilation or decay, the study of the origin and propagation mechanisms of cosmic-ray particles, and gamma-ray astronomy . DAMPE consists of four sub-detectors: a plastic scintillator strip detector, a Silicon–Tungsten tracKer–converter (STK), a BGO calorimeter and a neutron detector . The STK is composed of six double layers of single-sided silicon mi…