Search results for "cardinality"

showing 10 items of 42 documents

A note on rank 2 diagonals

2020

<p>We solve two questions regarding spaces with a (G<sub>δ</sub>)-diagonal of rank 2. One is a question of Basile, Bella and Ridderbos about weakly Lindelöf spaces with a G<sub>δ</sub>-diagonal of rank 2 and the other is a question of Arhangel’skii and Bella asking whether every space with a diagonal of rank 2 and cellularity continuum has cardinality at most continuum.</p>

DiagonalCardinal invariantsMathematics::General TopologyWeakly Lindelöflcsh:AnalysisSpace (mathematics)01 natural sciencesCombinatoricsBELLACardinalitydual propertiesCardinality boundsFOS: MathematicsRank (graph theory)Continuum (set theory)0101 mathematicsDual propertiesMathematics - General TopologyMathematicsweakly LindelofGδ- diagonallcsh:Mathematics010102 general mathematicsGeneral Topology (math.GN)neighbourhood assignmentGδ-diagonallcsh:QA299.6-433lcsh:QA1-939gδ-diagonal010101 applied mathematicscardinality boundsMathematics::LogicNeighbourhood assignmentSettore MAT/03 - GeometriaGeometry and Topologyweakly lindelöf
researchProduct

A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection

2012

This paper presents a new procedure that extends genetic algorithms from their traditional domain of optimization to fuzzy ranking strategy for selecting efficient portfolios of restricted cardinality. The uncertainty of the returns on a given portfolio is modeled using fuzzy quantities and a downside risk function is used to describe the investor's aversion to risk. The fitness functions are based both on the value and the ambiguity of the trapezoidal fuzzy number which represents the uncertainty on the return. The soft-computing approach allows us to consider uncertainty and vagueness in databases and also to incorporate subjective characteristics into the portfolio selection problem. We …

Mathematical optimizationCardinalityComputer Science::Computational Engineering Finance and ScienceArtificial IntelligenceLogicDownside riskPortfolioFuzzy set operationsFuzzy numberPost-modern portfolio theoryPortfolio optimizationFuzzy logicMathematicsFuzzy Sets and Systems
researchProduct

Weak regularity and consecutive topologizations and regularizations of pretopologies

2009

Abstract L. Foged proved that a weakly regular topology on a countable set is regular. In terms of convergence theory, this means that the topological reflection Tξ of a regular pretopology ξ on a countable set is regular. It is proved that this still holds if ξ is a regular σ -compact pretopology. On the other hand, it is proved that for each n ω there is a (regular) pretopology ρ (on a set of cardinality c ) such that ( RT ) k ρ > ( RT ) n ρ for each k n and ( RT ) n ρ is a Hausdorff compact topology, where R is the reflector to regular pretopologies. It is also shown that there exists a regular pretopology of Hausdorff RT -order ⩾ ω 0 . Moreover, all these pretopologies have the property…

Discrete mathematicsPretopologyHausdorff spaceMathematics::General TopologyRegularization (mathematics)CombinatoricsReflection (mathematics)CardinalityMathematics::Category TheoryTopologizationRegularizationOrder (group theory)Countable setGeometry and TopologyMathematicsWeak baseMAD familyTopology and its Applications
researchProduct

Point counting on Picard curves in large characteristic

2005

We present an algorithm for computing the cardinality of the Jacobian of a random Picard curve over a finite field. If the underlying field is a prime field Fp, the algorithm has complexity O(p).

Discrete mathematicsAlgebra and Number TheoryApplied MathematicsJacobian varietyGeometryField (mathematics)Computational Mathematicssymbols.namesakeMathematics::Algebraic GeometryFinite fieldPoint countingCardinalityJacobian matrix and determinantsymbolsPicard hornPrime fieldMathematicsMathematics of Computation
researchProduct

Isometric embeddings of snowflakes into finite-dimensional Banach spaces

2016

We consider a general notion of snowflake of a metric space by composing the distance by a nontrivial concave function. We prove that a snowflake of a metric space $X$ isometrically embeds into some finite-dimensional normed space if and only if $X$ is finite. In the case of power functions we give a uniform bound on the cardinality of $X$ depending only on the power exponent and the dimension of the vector space.

30L05 46B85 54C25 54E40 28A80Pure mathematicsmetric spacesGeneral MathematicsMathematicsofComputing_GENERALBanach space01 natural sciencesfunctional analysisCardinalityMathematics - Metric GeometryDimension (vector space)0103 physical sciencesFOS: MathematicsMathematics (all)Mathematics::Metric Geometry0101 mathematicsSnowflakeNormed vector spaceMathematicsConcave functionApplied Mathematicsta111010102 general mathematicsnormiavaruudetMetric Geometry (math.MG)normed spacesmetriset avaruudetMetric spacefractalsfraktaalit010307 mathematical physicsfunktionaalianalyysiMathematics (all); Applied MathematicsVector spaceProceedings of the American Mathematical Society
researchProduct

A smallest irregular oriented graph containing a given diregular one

2004

AbstractA digraph is called irregular if its vertices have mutually distinct ordered pairs of semi-degrees. Let D be any diregular oriented graph (without loops or 2-dicycles). A smallest irregular oriented graph F, F=F(D), is constructed such that F includes D as an induced subdigraph, the smallest digraph being one with smallest possible order and with smallest possible size. If the digraph D is arcless then V(D) is an independent set of F(D) comprising almost all vertices of F(D) as |V(D)|→∞. The number of irregular oriented graphs is proved to be superexponential in their order. We could not show that almost all oriented graphs are/are not irregular.

Discrete mathematicsAlmost all verticesIrregularizationDigraphDirected graphSuperexponential cardinalityGraphTheoretical Computer ScienceCombinatoricsIndependent setOrdered pairDiscrete Mathematics and CombinatoricsDiregular digraphOriented graphMathematicsDiscrete Mathematics
researchProduct

Maximum weight relaxed cliques and Russian Doll Search revisited

2015

Trukhanov et al. [Trukhanov S, Balasubramaniam C, Balasundaram B, Butenko S (2013) Algorithms for detecting optimal hereditary structures in graphs, with application to clique relaxations. Comp. Opt. and Appl., 56(1), 113–130] used the Russian Doll Search (RDS) principle to effectively find maximum hereditary structures in graphs. Prominent examples of such hereditary structures are cliques and some clique relaxations intensely discussed and studied in network analysis. The effectiveness of the tailored RDS by Trukhanov et al. for s-plex and s-defective clique can be attributed to their cleverly designed incremental verification procedures used to distinguish feasible from infeasible struct…

CliqueDiscrete mathematics021103 operations researchRelaxed clique Russian Doll Search Optimal hereditary structures Maximum weight problemApplied Mathematics010102 general mathematics0211 other engineering and technologies02 engineering and technology01 natural sciencesVerification procedureCombinatoricsCardinalityExact algorithmBundleDiscrete Mathematics and Combinatorics0101 mathematicsMathematicsNetwork analysisDiscrete Applied Mathematics
researchProduct

Deuring’s mass formula of a Mumford family

2015

We study the Newton polygon jumping locus of a Mumford family in char p p . Our main result says that, under a mild assumption on p p , the jumping locus consists of only supersingular points and its cardinality is equal to ( p r − 1 ) ( g − 1 ) (p^r-1)(g-1) , where r r is the degree of the defining field of the base curve of a Mumford family in char p p and g g is the genus of the curve. The underlying technique is the p p -adic Hodge theory.

CombinatoricsCardinalityDegree (graph theory)Applied MathematicsGeneral MathematicsHodge theoryGenus (mathematics)Field (mathematics)Newton polygonLocus (mathematics)Base (topology)MathematicsTransactions of the American Mathematical Society
researchProduct

A Novel Border Identification Algorithm Based on an “Anti-Bayesian” Paradigm

2013

Published version of a chapter in the book: Computer Analysis of Images and Patterns. Also available from the publisher at: http://dx.doi.org/10.1007/978-3-642-40261-6_23 Border Identification (BI) algorithms, a subset of Prototype Reduction Schemes (PRS) aim to reduce the number of training vectors so that the reduced set (the border set) contains only those patterns which lie near the border of the classes, and have sufficient information to perform a meaningful classification. However, one can see that the true border patterns (“near” border) are not able to perform the task independently as they are not able to always distinguish the testing samples. Thus, researchers have worked on thi…

021103 operations researchComputer scienceVDP::Mathematics and natural science: 400::Information and communication science: 420::Algorithms and computability theory: 4220211 other engineering and technologiesClass (philosophy)02 engineering and technologyField (computer science)Term (time)Support vector machineSet (abstract data type)Identification (information)Bayes' theoremCardinality0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingVDP::Mathematics and natural science: 400::Mathematics: 410::Algebra/algebraic analysis: 414InformationSystems_MISCELLANEOUSAlgorithm
researchProduct

Combinatorial aspects of L-convex polyominoes

2007

We consider the class of L-convex polyominoes, i.e. those polyominoes in which any two cells can be connected with an ''L'' shaped path in one of its four cyclic orientations. The paper proves bijectively that the number f"n of L-convex polyominoes with perimeter 2(n+2) satisfies the linear recurrence relation f"n"+"2=4f"n"+"1-2f"n, by first establishing a recurrence of the same form for the cardinality of the ''2-compositions'' of a natural number n, a simple generalization of the ordinary compositions of n. Then, such 2-compositions are studied and bijectively related to certain words of a regular language over four letters which is in turn bijectively related to L-convex polyominoes. In …

Discrete mathematicsClass (set theory)Mathematics::CombinatoricsPolyominoEnumerationOpen problemGenerating functionRegular polygonPolyominoesNatural numberComputer Science::Computational GeometryFormal SeriesCombinatoricsCardinalityRegular languageDiscrete Mathematics and CombinatoricsTomographyAlgorithmsbinary tomographyMathematicsEnumeration; Formal Series; PolyominoesEuropean Journal of Combinatorics
researchProduct