Search results for "cartilage"

showing 10 items of 252 documents

Der HEPFIEx-Simulator, eine Apparatur zur Bestimmung der Reibzahlen zwischen Hüftkopf-Prothesen und Knorpel / The HEPFlEx Simulator, a Device for Mea…

2002

We describe a device designed to investigate friction between various femoral head prostheses and human acetabula. It enables not only the determination of friction and the relevance of the play between the femoral head and acetabulum, but also the evaluation of the kinematic behaviour of bipolar prostheses. In the simulator, the various femoral head prostheses are placed on a special cone and tested against a human cadaveric acetabulum. The swiveling range of the device is uniaxial, and the swiveling angle is +/- 35 degrees. The maximum force produced pneumatically is 5kN. Testing of the simulator with a TEP was successful and friction-coefficients of < 0.1 were measured, as are reported i…

Materials sciencemedicine.medical_treatmentCartilageBiomedical EngineeringKinematicsProsthesisAcetabulumFemoral headmedicine.anatomical_structuremedicineHead (vessel)FemurCadaveric spasmSimulationBiomedizinische Technik/Biomedical Engineering
researchProduct

Dose Responsive Effects of Subcutaneous Pentosan Polysulfate Injection in Mucopolysaccharidosis Type VI Rats and Comparison to Oral Treatment

2014

Background We previously demonstrated the benefits of daily, oral pentosan polysulfate (PPS) treatment in a rat model of mucopolysaccharidosis (MPS) type VI. Herein we compare these effects to once weekly, subcutaneous (s.c.) injection. The bioavailability of injected PPS is greater than oral, suggesting better delivery to difficult tissues such as bone and cartilage. Injected PPS also effectively treats osteoarthritis in animals, and has shown success in osteoarthritis patients. Methodology/principal findings One-month-old MPS VI rats were given once weekly s.c. injections of PPS (1, 2 and 4 mg/kg, human equivalent dose (HED)), or daily oral PPS (4 mg/kg HED) for 6 months. Serum inflammato…

Cartilage ArticularMaleMucopolysaccharidosisMucopolysaccharidosis type VIlcsh:MedicineAdministration OralOsteoarthritisOral administrationMedicine and Health SciencesFemurGrowth Platelcsh:Sciencehealth care economics and organizationsGlycosaminoglycansPentosan Sulfuric PolyesterMucopolysaccharidosis VIMultidisciplinaryMucopolysaccharidosis VIPentosan polysulfateBiomechanical Phenomena3. Good healthFemaleAnatomyResearch Articlemedicine.drugmedicine.medical_specialtyInflammatory DiseasesInjections SubcutaneousMovementeducationUrologyBiological AvailabilityResearch and Analysis MethodsDrug Administration ScheduleAutosomal Recessive DiseasesGeneticsmedicineAnimalsAnimal Models of DiseaseBoneAdverse effectMolecular BiologyClinical GeneticsDose-Response Relationship Drugbusiness.industrylcsh:RTherapeutic effectBiology and Life SciencesMucopolysaccharidosesmedicine.diseaseSpineRatsSurgeryAnimal Studieslcsh:QVeterinary ScienceTomography X-Ray ComputedbusinessPLoS ONE
researchProduct

Profilin 1 is required for abscission during late cytokinesis of chondrocytes

2009

Profilins are key factors for dynamic rearrangements of the actin cytoskeleton. However, the functions of profilins in differentiated mammalian cells are uncertain because profilin deficiency is early embryonic lethal for higher eukaryotes. To examine profilin function in chondrocytes, we disrupted the profilin 1 gene in cartilage (Col2pfn1). Homozygous Col2pfn1 mice develop progressive chondrodysplasia caused by disorganization of the growth plate and defective chondrocyte cytokinesis, indicated by the appearance of binucleated cells. Surprisingly, Col2pfn1 chondrocytes assemble and contract actomyosin rings normally during cell division; however, they display defects during late cytokines…

Cell divisionMice Transgenicmacromolecular substancesBiologyMyosinsOsteochondrodysplasiasGeneral Biochemistry Genetics and Molecular BiologyChondrocyteArticleBone and BonesMiceProfilinsChondrocytesMyosinmedicineAnimalsMolecular BiologyActinCytokinesisGeneral Immunology and MicrobiologyGeneral NeuroscienceActin cytoskeletonActinsCell biologymedicine.anatomical_structureCartilageProfilinGene Targetingbiology.proteinLamellipodiumCytokinesis
researchProduct

Association between tibial subchondral bone structure from plain radiographs and cartilage composition from quantitative MRI in postmenopausal women …

2016

Postmenopausal womenbusiness.industryCartilageBiomedical EngineeringDentistryOsteoarthritismedicine.diseasemedicine.anatomical_structureRheumatologySubchondral bonemedicineOrthopedics and Sports MedicinePlain radiographsbusinessOsteoarthritis and Cartilage
researchProduct

Human nasoseptal chondrocytes maintain their differentiated phenotype on PLLA scaffolds produced by thermally induced phase separation and supplement…

2018

Damage of hyaline cartilage such as nasoseptal cartilage requires proper reconstruction, which remains challenging due to its low intrinsic repair capacity. Implantation of autologous chondrocytes in combination with a biomimetic biomaterial represents a promising strategy to support cartilage repair. Despite so far mostly tested for bone tissue engineering, bioactive glass (BG) could exert stimulatory effects on chondrogenesis. The aim of this work was to produce and characterize composite porous poly(L-lactide) (PLLA)/1393BG scaffolds via thermally induced phase separation (TIPS) technique and assess their effects on chondrogenesis of nasoseptal chondrocytes. The PLLA scaffolds without or…

Malecartilage tissue engineering02 engineering and technologyBiochemistrylaw.inventionExtracellular matrixX-Ray DiffractionlawOrthopedics and Sports MedicineGlycosaminoglycansExtracellular Matrix Proteins0303 health sciencesSettore ING-IND/24 - Principi Di Ingegneria ChimicaCalorimetry Differential ScanningTissue ScaffoldsChemistryHyaline cartilageTemperatureSettore ING-IND/34 - Bioingegneria IndustrialeCell DifferentiationMiddle AgedPhenotypemedicine.anatomical_structureBioactive glassFemaleAdultPolyesters0206 medical engineeringType II collagenNoseChondrocyteYoung Adult03 medical and health sciencesChondrocytesRheumatologymedicineHumanspoly(L)lactic acidCollagen Type IIMolecular BiologyAggrecan030304 developmental biologyCartilagenasoseptal chondrocyteCell BiologyChondrogenesis020601 biomedical engineeringBioactive glass 1393Gene Expression RegulationBiophysicschondrogenesiGlassCollagen Type X
researchProduct

The Association between Dietary Magnesium Intake and Magnetic Resonance Parameters for Knee Osteoarthritis

2019

The aim of the study was to evaluate the relationship between dietary magnesium (Mg) intake and prevalence of knee osteoarthritis (OA), a topic poorly explored in the literature. Overall, 783 people participating in the Osteoarthritis Initiative (59.8% females

Cartilage ArticularMalelifestylemedicine.medical_specialtyKnee JointUrologylcsh:TX341-641030209 endocrinology & metabolismOsteoarthritismagnesiumDiet SurveysDietary MagnesiumArticleknee osteoarthritisEating03 medical and health sciencesknee osteoarthriti0302 clinical medicinemedicineHumansFemurTibia030203 arthritis & rheumatologyNutrition and Dieteticsmedicine.diagnostic_testbusiness.industryCartilageConfoundingMagnetic resonance imagingMean ageMiddle AgedOsteoarthritis Kneemedicine.diseaseMagnetic Resonance ImagingDietagedCross-Sectional Studiesmedicine.anatomical_structureLinear ModelsFemalehealthy ageingbusinesslcsh:Nutrition. Foods and food supplyMRIFood ScienceNutrients
researchProduct

Biostable Scaffolds of Polyacrylate Polymers Implanted in the Articular Cartilage Induce Hyaline-Like Cartilage Regeneration in Rabbits

2017

[EN] Purpose: To study the influence of scaffold properties on the organization of ¿in vivo¿ cartilage regeneration. Our hypothesis is that stress transmission to the cells seeded inside the scaffold pores or surrounding it, which is highly dependent on the scaffold properties, determine differentiation of both mesenchymal cells and dedifferentiated autologous chondrocytes. Methods: Four series of porous scaffolds made of different polyacrylate polymers, previously seeded with cultured rabbit chondrocytes or without cells preseeded, were implanted in cartilage defects in rabbits. Subchondral bone was always injured during the surgery in order to allow blood to reach the implantation site an…

Cartilage ArticularHyalinScaffold0206 medical engineeringBiomedical EngineeringMedicine (miscellaneous)Biocompatible MaterialsBioengineering02 engineering and technologyBiomaterialsBiopolymersChondrocytesTissue engineeringIn vivomedicineAnimalsRegenerationTissue engineeringOriginal Research ArticleHyalineScaffoldschemistry.chemical_classificationTissue ScaffoldsGuided Tissue RegenerationRegeneration (biology)CartilageMesenchymal stem cellCell DifferentiationMesenchymal Stem CellsGeneral MedicinePolymerAnatomy021001 nanoscience & nanotechnology020601 biomedical engineeringAnimal modelsDisease Models AnimalCartilagemedicine.anatomical_structureAcrylateschemistryFISICA APLICADAMAQUINAS Y MOTORES TERMICOSRabbits0210 nano-technologyBiomedical engineeringThe International Journal of Artificial Organs
researchProduct

In situ forming hydrogels of new amino hyaluronic acid/benzoyl-cysteine derivatives as potential scaffolds for cartilage regeneration

2012

A new chemical strategy is described to link ethylenediamino (EDA) groups to primary hydroxyl groups of hyaluronic acid (HA) and the obtained derivatives have been characterized by 1H-NMR and 13C-NMR analyses. Such HA–EDA derivatives have been exploited to control the functionalization degree in benzoyl-cysteine (BC) groups, chosen as moieties able to allow both self-assembling in aqueous media and an oxidative crosslinking. In particular, the kinetics of oxidation of thiol groups in HA–EDA–BC derivatives has been studied in Dulbecco's Phosphate Buffer Solution (DPBS) pH 7.4 by colorimetric assays and rheological measurements. Mechanical properties of chemical hydrogels obtained after oxida…

chemistry.chemical_classificationKineticsGeneral ChemistryCondensed Matter PhysicsExtracellular matrixchemistry.chemical_compoundchemistryIn situ forming hydrogels hyaluronic acid scaffolds cartilage regeneration tissue engineeringSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoEnzymatic hydrolysisHyaluronic acidSelf-healing hydrogelsThiolOrganic chemistrySurface modificationNuclear chemistryCysteine
researchProduct

Transcriptional and post-transcriptional regulation of iNOS expression in human chondrocytes

2009

Chondrocytes are important for the development and maintenance of articular cartilage. However, both in osteoarthritis (OA) and rheumatoid arthritis (RA) chondrocytes are involved in the process of cartilage degradation and synthesize important immunomodulatory mediators, including nitric oxide (NO) generated by the inducible NO synthase (iNOS). To uncover the role of iNOS in the pathomechanisms of OA and RA, we analyzed the regulation of iNOS expression using immortalized human chondrocytes as a reproducible model. In C-28/I2 chondrocytes, iNOS expression was associated with the expression of the chondrocyte phenotype. Peak induction by a cytokine cocktail occurred between 6 and 8h and dec…

Cartilage Articularmedicine.medical_specialtyAnti-Inflammatory AgentsNitric Oxide Synthase Type IIBiologyBiochemistryp38 Mitogen-Activated Protein KinasesChondrocyteArticleGene Expression Regulation EnzymologicGlucocorticoid receptorChondrocytesReceptors GlucocorticoidInternal medicineGene expressionmedicineHumansRNA MessengerRNA Processing Post-TranscriptionalPost-transcriptional regulationCell Line TransformedPharmacologyRegulation of gene expressionNF-kappa B p50 SubunitRNA-Binding ProteinsInterferon-Stimulated Gene Factor 3Janus Kinase 2Cell biologyNitric oxide synthaseEndocrinologymedicine.anatomical_structureCell cultureEnzyme Inductionbiology.proteinTrans-ActivatorsCytokinesZearalenoneSignal transduction
researchProduct

New emerging potentials for human Wharton's jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity.

2010

In recent years, human mesenchymal stem cells (MSC) have been extensively studied. Their key characteristics of long-term self-renewal and a capacity to differentiate into diverse mature tissues favour their use in regenerative medicine applications. Stem cells can be found in embryonic and extra-embryonic tissues as well as in adult organs. Several reports indicate that cells of Wharton's jelly (WJ), the main component of umbilical cord extracellular matrix, are multipotent stem cells, expressing markers of bone marrow mesenchymal stem cells (BM-MSC), and giving rise to different cellular types of both connective and nervous tissues. Wharton's jelly mesenchymal stem cells (WJ-MSC) express …

Clinical uses of mesenchymal stem cellsBone Marrow CellsBiologyRegenerative MedicineUmbilical CordImmunomodulationMesodermWharton's jellyAnimalsHumansCell LineageStem cell transplantation for articular cartilage repairCell ProliferationSettore BIO/16 - Anatomia UmanaMultipotent Stem CellsMesenchymal stem cellEndodermCell DifferentiationMesenchymal Stem CellsCell BiologyHematologyCell biologyExtracellular MatrixMultipotent Stem CellAmniotic epithelial cellsImmunologyHepatocytesmesenchymal stem cells umbilical cord Wharton's jelly differentiation hepatocyteStem cellBiomarkersDevelopmental BiologyAdult stem cellStem cells and development
researchProduct