Search results for "cavity quantum electrodynamic"

showing 10 items of 70 documents

Spontaneous, collective coherence in driven, dissipative cavity arrays

2014

We study an array of dissipative tunnel-coupled cavities, each interacting with an incoherently pumped two-level emitter. For cavities in the lasing regime, we find correlations between the light fields of distant cavities, despite the dissipation and the incoherent nature of the pumping mechanism. These correlations decay exponentially with distance for arrays in any dimension but become increasingly long ranged with increasing photon tunneling between adjacent cavities. The interaction-dominated and the tunneling-dominated regimes show markedly different scaling of the correlation length which always remains finite due to the finite photon trapping time. We propose a series of observables…

PhysicsQuantum PhysicsPhotonCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCavity quantum electrodynamicsFOS: Physical sciencesPhysics::OpticsObservableDissipationAtomic and Molecular Physics and OpticsQuantum electrodynamicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Dissipative systemQuantum Physics (quant-ph)ScalingLasing thresholdCoherence (physics)
researchProduct

Resonance energy transfer between two atoms in a conducting cylindrical waveguide

2018

We consider the energy transfer process between two identical atoms placed inside a perfectly conducting cylindrical waveguide. We first introduce a general analytical expression of the energy transfer amplitude in terms of the electromagnetic Green's tensor; we then evaluate it in the case of a cylindrical waveguide made of a perfect conductor, for which analytical forms of the Green's tensor exist. We numerically analyse the energy transfer amplitude when the radius of the waveguide is such that the transition frequency of both atoms is below the lower cutoff frequency of the waveguide, so that the resonant photon exchange is strongly suppressed. We consider both cases of atomic dipoles p…

PhysicsQuantum PhysicsPhotonResonancePhysics::OpticsFOS: Physical sciencesResonant energy transfer. Resonance dipole-dipole interactions. Cavity quantum electrodynamics.Interaction energy01 natural sciencesCutoff frequency010305 fluids & plasmasExcited state0103 physical sciencesWaveguide (acoustics)Perfect conductorAtomic physics010306 general physicsGround stateQuantum Physics (quant-ph)
researchProduct

Stationary entanglement of photons and atoms in a high-finesse resonator

2013

We predict that the collective excitations of an atomic array become entangled with the light of a high-finesse cavity mode when they are suitably coupled. This entanglement is of Einstein-Podolsky-Rosen type, it is robust against cavity losses and is a stationary property of the coupled system. It is generated when the atomic array is aligned along the cavity axis and driven transversally by a laser, when coherent scattering of photons into the cavity mode is suppressed because of phase-mismatching. We identify the parameter regimes under which entanglement is found and show that these are compatible with existing experimental setups.

PhysicsQuantum PhysicsPhotonScatteringCavity quantum electrodynamicsPhase (waves)Physics::OpticsFOS: Physical sciencesQuantum entanglementQuantum PhysicsLaserAtomic and Molecular Physics and Opticslaw.inventionFinesseResonatorlawPhysics::Accelerator PhysicsAtomic physicsQuantum Physics (quant-ph)
researchProduct

Microscopic derivation of the Jaynes-Cummings model with cavity losses

2006

In this paper we provide a microscopic derivation of the master equation for the Jaynes-Cummings model with cavity losses. We single out both the differences with the phenomenological master equation used in the literature and the approximations under which the phenomenological model correctly describes the dynamics of the atom-cavity system. Some examples wherein the phenomenological and the microscopic master equations give rise to different predictions are discussed in detail.

PhysicsQuantum PhysicsQuantum decoherenceJaynes–Cummings modelSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciCavity quantum electrodynamicsFOS: Physical sciences01 natural sciencesAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della Materia010305 fluids & plasmas0103 physical sciencesPhenomenological modelMaster equationQUANTUM-ELECTRODYNAMICS:AYNES-CUMMINGS MODELStatistical physicsQuantum Physics (quant-ph)010306 general physics
researchProduct

Entanglement generation and protection by detuning modulation

2006

We introduce a protocol for steady-state entanglement generation and protection based on detuning modulation in the dissipative interaction between a two-qubit system and a bosonic mode. The protocol is a global-addressing scheme which only requires control over the system as a whole. We describe a postselection procedure to project the register state onto a subspace of maximally entangled states. We also outline how our proposal can be implemented in a circuit-quantum electrodynamics setup.

PhysicsQuantum PhysicsQuantum discordCavity quantum electrodynamicsSENSITIVE POPULATION DECAYFOS: Physical sciencesTheoryofComputation_GENERALSPONTANEOUS EMISSIONQuantum PhysicsQuantum entanglementTopologyAtomic and Molecular Physics and Optics2-ATOM DICKE-MODELPostselectionQuantum mechanicsQubitDECOHERENCE-FREE SUBSPACESW stateQuantum Physics (quant-ph)Amplitude damping channelBAND SQUEEZED VACUUMQuantum teleportationPhysical Review A
researchProduct

Generating and Revealing a Quantum Superposition of Electromagnetic Field Binomial States in a Cavity

2007

We introduce the $N$-photon quantum superposition of two orthogonal generalized binomial states of electromagnetic field. We then propose, using resonant atom-cavity interactions, non-conditional schemes to generate and reveal such a quantum superposition for the two-photon case in a single-mode high-$Q$ cavity. We finally discuss the implementation of the proposed schemes.

PhysicsQuantum PhysicsQuantum superpositionCavity quantum electrodynamicsQuantum simulatorPhysics::OpticsFOS: Physical sciencesAtomic and Molecular Physics and OpticsQuantum technologyOpen quantum systemquantumQuantum error correctionQuantum mechanicsQubitQuantum algorithmQuantum Physics (quant-ph)
researchProduct

Observing the phase space trajectory of an entangled matter wave packet

2010

We observe the phase space trajectory of an entangled wave packet of a trapped ion with high precision. The application of a spin dependent light force on a superposition of spin states allows for coherent splitting of the matter wave packet such that two distinct components in phase space emerge. We observe such motion with a precision of better than 9% of the wave packet extension in both momentum and position, corresponding to a 0.8 nm position resolution. We accurately study the effect of the initial ion temperature on the quantum entanglement dynamics. Furthermore, we map out the phonon distributions throughout the action of the displacement force. Our investigation shows corrections t…

PhysicsQuantum PhysicsWave packetCavity quantum electrodynamicsFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences010305 fluids & plasmasPhase spaceQuantum mechanicsQubit0103 physical sciencesMatter waveW stateQuantum Physics (quant-ph)010306 general physicsQuantum teleportationTrapped ion quantum computer
researchProduct

Casimir-Polder interatomic potential between two atoms at finite temperature and in the presence of boundary conditions

2007

We evaluate the Casimir-Polder potential between two atoms in the presence of an infinite perfectly conducting plate and at nonzero temperature. In order to calculate the potential, we use a method based on equal-time spatial correlations of the electric field, already used to evaluate the effect of boundary conditions on interatomic potentials. This method gives also a transparent physical picture of the role of a finite temperature and boundary conditions on the Casimir-Polder potential. We obtain an analytical expression of the potential both in the near and far zones, and consider several limiting cases of interest, according to the values of the parameters involved, such as atom-atom d…

PhysicsQuantum Physicsdispersion interactionFOS: Physical sciencesInteratomic potentialLimitingAtomic and Molecular Physics and OpticsCasimir effectCavity quantum electrodynamictemperature effects.Lennard-Jones potentialQuantum mechanicsElectric fieldPhysics::Atomic and Molecular ClustersBoundary value problemPhysics::Atomic PhysicsQuantum field theoryQuantum Physics (quant-ph)
researchProduct

NON-MARKOVIAN DYNAMICS OF CAVITY LOSSES

2008

We provide a microscopic derivation for the non-Markovian master equation for an atom-cavity system with cavity losses and show that they can induce population trapping in the atomic excited state, when the environment outside the cavity has a non-flat spectrum. Our results apply to hybrid solid state systems and can turn out to be helpful to find the most appropriate description of leakage in the recent developments of cavity quantum electrodynamics.

PhysicsQuantum Physicseducation.field_of_studyPhysics and Astronomy (miscellaneous)Quantum noisePopulationquantum noiseCavity quantum electrodynamicsFOS: Physical sciencesPhysics::OpticsMarkov processCavity quantum electrodynamicOpen quantum systemsymbols.namesakeExcited stateQuantum electrodynamicsMaster equationopen systemssymbolsPhysics::Accelerator PhysicsQuantum Physics (quant-ph)educationLeakage (electronics)International Journal of Quantum Information
researchProduct

Quantum emitter states dressed by the plasmon modes of a metal nanoparticle in the strong coupling regim

2017

The quantum control of emitters is a key issue for quantum information processing at the nanoscale. This generally necessitates the strong coupling of emitters to a high Q-cavity for efficient manipulation of the atoms and field dynamics (cavity quantum electrodynamics or cQED). Since almost a decade, strong efforts are put to transpose cQED concepts to plasmonics in order to profit of the strong mode confinement of surface plasmons polaritons. Despite the intrinsic presence of lossy channels leading to strong decoherence in plasmonics systems, it has been experimentally proven that it is possible to reach the strong coupling regim [1].

PhysicsQuantum decoherenceCondensed matter physicsField (physics)Surface plasmonCavity quantum electrodynamicsPhysics::OpticsNanoparticle02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesQuantum dotQuantum mechanics0103 physical sciencesPolariton010306 general physics0210 nano-technologyPlasmon2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)
researchProduct