Search results for "cavity"
showing 10 items of 641 documents
Gain Dynamics after Ultrashort Pulse Trains in Quantum Dot based Semiconductor Optical Amplifiers
2007
We study the gain dynamics in QD-based SOAs after excitation with fs-pulse trains of up to THz repetition rates. A complete ground-state gain recovery is found for 200 GHz repetition rates and injection currents around 90 mA.
Dynamic path length changes in all-fiber mirrors: Transmission modulation
1995
Abstract In this paper, we present a technique to modulate the transmission of an all-fiber mirror. This technique is based on the phase modulation of the light in the fiber loop, combined with the time delay between the clockwise and anticlockwise propagating beams. Using Jones calculus, a theoretical analysis has been carried out to describe the effects of static polarization changes and a dynamic phase modulation. An experimental all-fiber optical mirror has been constructed, and using a 1–MHz piezoelectric disc as the phase modulator, we demonstrate that it is possible to achieve either a 1–MHz or 2–MHz transmission modulation by adjusting the polarization state.
Influence of possible reflections on the operation of European ITER gyrotrons
2010
The theory describing the influence of reflection s on operation of gyrotrons with radial output is used for evaluating the effect of reflections on the operation of the ITER 170 GHz 2 MW coaxial cavity gyrotron, which is under development, and the 170 GHz 1 MW cylindrical cavity gyrotron as a fall back solution.
Phonoritons as Hybridized Exciton-Photon-Phonon Excitations in a Monolayer h -BN Optical Cavity
2021
[EN] A phonoriton is an elementary excitation that is predicted to emerge from hybridization between exciton, phonon, and photon. Besides the intriguing many-particle structure, phonoritons are of interest as they could serve as functional nodes in devices that utilize electronic, phononic, and photonic elements for energy conversion and thermal transport applications. Although phonoritons are predicted to emerge in an excitonic medium under intense electromagnetic wave irradiation, the stringent condition for their existence has eluded direct observation in solids. In particular, on-resonance, intense pumping schemes have been proposed, but excessive photoexcitation of carriers prevents op…
Efficient generation of N-photon binomial states and their use in quantum gates in cavity QED
2010
A high-fidelity scheme to generate N-photon generalized binomial states (NGBSs) in a single-mode high-Q cavity is proposed. A method to construct superpositions of exact orthogonal NGBSs is also provided. It is then shown that these states, for any value of N, may be used for a realization of a controlled-NOT gate, based on the dispersive interaction between the cavity field and a control two-level atom. The possible implementation of the schemes is finally discussed.
Complex temperature dependence of coupling and dissipation of cavity magnon polaritons from millikelvin to room temperature
2018
Hybridized magnonic-photonic systems are key components for future information processing technologies such as storage, manipulation or conversion of data both in the classical (mostly at room temperature) and quantum (cryogenic) regime. In this work, we investigate a YIG sphere coupled strongly to a microwave cavity over the full temperature range from $290\,\mathrm{K}$ down to $30\,\mathrm{mK}$. The cavity-magnon polaritons are studied from the classical to the quantum regime where the thermal energy is less than one resonant microwave quanta, i.e. at temperatures below $1\,\mathrm{K}$. We compare the temperature dependence of the coupling strength $g_{\rm{eff}}(T)$, describing the streng…
Observation of high-purity single photons hopping between optical cavities
2014
We experimentally demonstrate high-purity single photons hopping coherently between coupled optical cavities. The system shows high performance also as a controllable single-photon source, which emits single photons with a negative Wigner function.
Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires
2013
The Purcell effect dependence on the excitation power is studied in photonic crystal microcavity lasers embedding InAs/InP quantum wires. In the case of non-lasing modes, the Purcell effect has low dependence on the optical pumping, attributable to an exciton dynamics combining free and localized excitons. In the case of lasing modes, the influence of the stimulated emission makes ambiguous the determination of the Purcell factor. We have found that this ambiguity can be avoided by measuring the dependence of the decay time on the excitation power. These results provide insights in the determination of the Purcell factor in microcavity lasers. © 2013 AIP Publishing LLC.
Dissipative soliton pulsations with periods beyond the laser cavity round trip time
2005
We review recent results on periodic pulsations of the soliton parameters in a passively mode-locked fiber laser. Solitons change their shape, amplitude, width and velocity periodically in time. These pulsations are limit cycles of a dissipative nonlinear system in an infinite-dimensional phase space. Pulsation periods can vary from a few to hundreds of round trips. We present a continuous model of a laser as well as a model with parameter management. The results of the modeling are supported with experimental results obtained using a fiber laser. © World Scientific Publishing Company.
Coherence functions of the electrical and the optical noises in monomodal packaged vertical cavity surface emitting lasers
2006
Calculations of the frequency noise spectra and of the coherence functions between the electrical and the optical noises for a single-mode packaged vertical surface emitting laser (VCSEL) are reported.A rate-equation model for an index guided VCSEL is used, implemented with the electrical noise model including the intrinsic device, the package and external bias network.The extended model works up to the laser relaxation frequency. The amplitude optical noise and its correlation with the frequency and electrical noises are also analysed. The influence on the calculated quantities of some electrical and laser parameters is evaluated. The results show that generally the frequency noise is corr…