Search results for "cept"

showing 10 items of 15508 documents

Melatonin Targets Metabolism in Head and Neck Cancer Cells by Regulating Mitochondrial Structure and Function.

2021

This study was funded by grants from the Ministerio de Economia, Industria y Competitividad y por el Fondo de Desarrollo Regional FEDER, Spain nº SAF2013-49019, SAF2017-85903-P, and from the Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía (P07- CTS- 03135, P10- CTS- 5784, and CTS- 101), Spain. J.F. and L.M. have FPU fellowships from the Ministerio de Educación Cultura y Deporte, Spain. C.R.S. was a schorlarship holder from the Plan Propio de Investigación of the University of Granada.

0301 basic medicine:Phenomena and Processes::Chemical Phenomena::Biochemical Phenomena::Biochemical Processes::Phosphorylation::Oxidative Phosphorylation [Medical Subject Headings]PhysiologyClinical BiochemistrymelatoninMitochondrionBiochemistryMelatonina:Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans [Medical Subject Headings]0302 clinical medicine:Anatomy::Cells::Cells Cultured::Cell Line [Medical Subject Headings]head and neck cancer cells:Phenomena and Processes::Physiological Phenomena::Pharmacological Phenomena::Drug Resistance::Drug Resistance Neoplasm [Medical Subject Headings]MitophagyMitocondriasChemistryapoptosisglycolysisOXPHOSmitochondria030220 oncology & carcinogenesishormones hormone substitutes and hormone antagonistsmedicine.drug:Phenomena and Processes::Chemical Phenomena::Biochemical Phenomena::Biochemical Processes::Carbohydrate Metabolism::Glycolysis [Medical Subject Headings]Neoplasias de cabeza y cuello:Diseases::Neoplasms::Neoplasms by Site::Head and Neck Neoplasms [Medical Subject Headings]:Chemicals and Drugs::Inorganic Chemicals::Free Radicals::Reactive Oxygen Species [Medical Subject Headings]Mitofagiafree radicalsOxidative phosphorylationArticleMelatonin03 medical and health sciencesmedicine:Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Growth Processes::Cell Proliferation [Medical Subject Headings]Molecular BiologyRadicales libresCell growth:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::DNA-Binding Proteins::Receptors Cytoplasmic and Nuclear::Receptors Melatonin [Medical Subject Headings]:Chemicals and Drugs::Chemical Actions and Uses::Pharmacologic Actions::Therapeutic Uses::Antineoplastic Agents [Medical Subject Headings]lcsh:RM1-950:Anatomy::Cells::Cellular Structures::Subcellular Fractions::Mitochondria [Medical Subject Headings]Cell Biologymedicine.diseaseHead and neck squamous-cell carcinoma:Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Death::Apoptosis [Medical Subject Headings]Glucólisis030104 developmental biologylcsh:Therapeutics. PharmacologymitophagyApoptosisCancer cellCancer research:Chemicals and Drugs::Hormones Hormone Substitutes and Hormone Antagonists::Hormones::Melatonin [Medical Subject Headings]
researchProduct

Role of MUC4 in idiopathic pulmonary fibrosis

2019

Background: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and irreversible form of fibrotic intersticial lung disease, characterized by uncontrolled fibroblast proliferative processes and alveolar type II epithelial dysfunction. MUC4, a multi-domain transmembrane glycoprotein, is often overexpressed in epithelial cancers, with consequences for the biological properties, involved in cellular processes related to IPF. However, the role of MUC4 in IPF has not beet studied yet. Objective: To analyze the implication of MUC4 in IPF Methods: Lung tissue from 14 healthy and 14 IPF patients was obtained. MUC4 expression was analyzed by western blot, RT-PCR and immunohistochemistry. T…

0301 basic medicineA549 cellLungbusiness.industryReceptor expression05 social sciencesrespiratory systemmedicine.diseaserespiratory tract diseases03 medical and health sciencesIdiopathic pulmonary fibrosis030104 developmental biologymedicine.anatomical_structure0502 economics and businessmedicineCancer researchImmunohistochemistry050211 marketingsense organsEpithelial–mesenchymal transitionFibroblastbusinessMyofibroblastIdiopathic interstitial pneumonias
researchProduct

Systemic blockade of ACVR2B ligands prevents chemotherapy-induced muscle wasting by restoring muscle protein synthesis without affecting oxidative ca…

2016

AbstractDoxorubicin is a widely used and effective chemotherapy drug. However, cardiac and skeletal muscle toxicity of doxorubicin limits its use. Inhibiting myostatin/activin signalling can prevent muscle atrophy, but its effects in chemotherapy-induced muscle wasting are unknown. In the present study we investigated the effects of doxorubicin administration alone or combined with activin receptor ligand pathway blockade by soluble activin receptor IIB (sACVR2B-Fc). Doxorubicin administration decreased body mass, muscle size and bone mineral density/content in mice. However, these effects were prevented by sACVR2B-Fc administration. Unlike in many other wasting situations, doxorubicin indu…

0301 basic medicineACUTE DOXORUBICIN CARDIOTOXICITYEXPRESSIONmedicine.medical_specialtyMDX MICEhuumeetlihaksetMyostatinProtein degradationEXERCISE PROTECTSMYOSTATINArticledrugs03 medical and health sciencesInternal medicinemedicineDoxorubicinCANCER CACHEXIApreclinical researchWastingaineenvaihduntaMultidisciplinaryCARDIOMYOPATHYbiologyRECEPTORbusiness.industrychemotheraphyta1182Skeletal muscleta3141Activin receptorta3122Muscle atrophy3. Good health030104 developmental biologyEndocrinologymedicine.anatomical_structurebiology.proteinSKELETAL-MUSCLEHEARTmuscles3111 Biomedicinemedicine.symptombusinessmetabolismACVR2Bmedicine.drug
researchProduct

LRP1 Modulates APP Intraneuronal Transport and Processing in Its Monomeric and Dimeric State.

2017

The low-density lipoprotein receptor-related protein 1, LRP1, interacts with APP and affects its processing. This is assumed to be mostly caused by the impact of LRP1 on APP endocytosis. More recently, also an interaction of APP and LRP1 early in the secretory pathway was reported whereat retention of LRP1 in the ER leads to decreased APP cell surface levels and in turn, to reduced Aβ secretion. Here, we extended the biochemical and immunocytochemical analyses by showing via live cell imaging analyses in primary neurons that LRP1 and APP are transported only partly in common (one third) but to a higher degree in distinct fast axonal transport vesicles. Interestingly, co-expression of LRP1 a…

0301 basic medicineADAM10amyloid precursor protein (APP)Endocytosislcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicinemental disordersSecretionReceptorMolecular Biologylcsh:Neurosciences. Biological psychiatry. NeuropsychiatrySecretory pathwayOriginal ResearchdimerizationChemistryVesicleLRP1030104 developmental biologyBiochemistrytransportBiophysicsAxoplasmic transportprocessinglow density lipoprotein receptor-related protein 1 (LRP1)030217 neurology & neurosurgeryNeuroscienceFrontiers in molecular neuroscience
researchProduct

AMPA receptor complex constituents: Control of receptor assembly, membrane trafficking and subcellular localization

2018

Fast excitatory transmission at synapses of the central nervous system is mainly mediated by AMPA receptors (AMPARs). Synaptic AMPAR number and function correlates with synaptic strength. AMPARs are thus key proteins of activity-dependent plasticity in neuronal communication. Up- or down-regulation of synaptic AMPAR number is a tightly controlled dynamic process that involves export of receptors from the endoplasmic reticulum (ER) and Golgi apparatus, exocytosis and endocytosis as well as lateral diffusion of the receptors in the cell membrane. The four AMPAR subunits are embedded into a dynamic network of more than 30 interacting proteins. Many of these proteins are known to modulate recep…

0301 basic medicineAMPA receptorBiologyEndocytosisAxonal TransportExocytosis03 medical and health sciencesCellular and Molecular Neurosciencesymbols.namesakeAnimalsHumansReceptors AMPAReceptorMolecular BiologyNeuronsmusculoskeletal neural and ocular physiologyEndoplasmic reticulumCell BiologyGolgi apparatusSubcellular localizationCell biologyTransport proteinProtein Transport030104 developmental biologynervous systemSynapsessymbolsProtein MultimerizationGuanylate KinasesMolecular and Cellular Neuroscience
researchProduct

Repurposing of Bromocriptine for Cancer Therapy

2018

Bromocriptine is an ergot alkaloid and dopamine D2 receptor agonist used to treat Parkinson’s disease, acromegaly, hyperprolactinemia, and galactorrhea, and more recently diabetes mellitus. The drug is also active against pituitary hormone-dependent tumors (prolactinomas and growth-hormone producing adenomas). We investigated, whether bromocriptine also inhibits hormone-independent and multidrug-resistant (MDR) tumors. We found that bromocriptine was cytotoxic towards drug-sensitive CCRF-CEM, multidrug-resistant CEM/ADR5000 leukemic cells as well as wild-type or multidrug-resistant ABCB5-transfected HEK293 cell lines, but not sensitive or BCRP-transfected multidrug-resistant MDA-MB-231 brea…

0301 basic medicineAbcg2DNA damageDNA repairCellneoplasmsergot alkaloids03 medical and health sciencesDopamine receptor D2AcromegalymedicinePharmacology (medical)Original ResearchbromocriptinepharmacogenomicsPharmacologydrug repurposingbiologybusiness.industrylcsh:RM1-950medicine.diseaseBromocriptinelcsh:Therapeutics. Pharmacology030104 developmental biologymedicine.anatomical_structureMitochondrial respiratory chainCancer researchbiology.proteinbusinessmedicine.drugFrontiers in Pharmacology
researchProduct

Molecular Determinants of Sensitivity or Resistance of Cancer Cells Toward Sanguinarine.

2018

For decades, natural products represented a significant source of diverse and unique bioactive lead compounds in drug discovery field. In Clinical oncology, complete tumors remission is hampered by the development of drug-resistance. Therefore, development of cytotoxic agents that may overcome drug resistance is urgently needed. Here, the natural benzophenanthridine alkaloid sanguinarine has been studied for its cytotoxic activity against multidrug resistance (MDR) cancer cells. We investigated the role of the ATP-binding cassette (ABC) transporters BCRP/ABCG2, P-glycoprotein/ABCB1 and its close relative ABCB5 in drug resistance. Further drug resistance mechanisms analyzed in this study wer…

0301 basic medicineAbcg2Drug resistance03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCytotoxic T cellcancerPharmacology (medical)SanguinarineEpidermal growth factor receptorOriginal ResearchPharmacologypharmacogenomicsdrug resistancebiologyChemistrylcsh:RM1-950ABCB5phytotherapybioinformaticsMultiple drug resistancelcsh:Therapeutics. Pharmacology030104 developmental biology030220 oncology & carcinogenesisCancer cellCancer researchbiology.proteinmicroarrayFrontiers in pharmacology
researchProduct

Multifactorial Modes of Action of Arsenic Trioxide in Cancer Cells as Analyzed by Classical and Network Pharmacology

2018

Arsenic trioxide is a traditional remedy in Chinese Medicine since ages. Nowadays, it is clinically used to treat acute promyelocytic leukemia (APL) by targeting PML/RARA. However, the drug’s activity is broader and the mechanisms of action in other tumor types remain unclear. In this study, we investigated molecular modes of action by classical and network pharmacological approaches. CEM/ADR5000 resistance leukemic cells were similar sensitive to As2O3 as their wild-type counterpart CCRF-CEM (resistance ratio: 1.88). Drug-resistant U87.MG ΔEGFR glioblastoma cells harboring mutated epidermal growth factor receptor were even more sensitive (collateral sensitive) than wild-type U87.MG cells (…

0301 basic medicineAcute promyelocytic leukemiaBiologyNF-κB03 medical and health scienceschemistry.chemical_compound0302 clinical medicinemedicinePharmacology (medical)Epidermal growth factor receptorArsenic trioxideTranscription factorOriginal ResearchpharmacogenomicsPharmacologydrug resistancelcsh:RM1-950PromoterAP-1medicine.diseasearsenic trioxidelcsh:Therapeutics. Pharmacology030104 developmental biologychemistryCistromeCell culture030220 oncology & carcinogenesisCancer cellCancer researchbiology.proteinFrontiers in Pharmacology
researchProduct

Retinoic Acid affects Lung Adenocarcinoma growth by inducing differentiation via GATA6 activation and EGFR and Wnt inhibition

2016

AbstractA fundamental task in cancer research aims at the identification of new pharmacological therapies that can affect tumor growth. Differentiation therapy might exploit this function not only for hematological diseases, such as acute promyelocytic leukemia (APML) but also for epithelial tumors, including lung cancer. Here we show that Retinoic Acid (RA) arrests in vitro and in vivo the growth of Tyrosine Kinase Inhibitors (TKI) resistant Non Small Cell Lung Cancer (NSCLC). In particular, we found that RA induces G0/G1 cell cycle arrest in TKI resistant NSCLC cells and activates terminal differentiation programs by modulating the expression of GATA6, a key transcription factor involved …

0301 basic medicineAcute promyelocytic leukemiaScienceEGFRRetinoic acidMice NudeTretinoinBiologyArticle03 medical and health scienceschemistry.chemical_compoundDifferentiation therapySettore BIO/13 - Biologia ApplicataCarcinoma Non-Small-Cell LungCell Line TumorGATA6 Transcription FactormedicineRetinoic acidAnimalsHumansLung cancerProtein Kinase InhibitorsWnt Signaling PathwayTranscription factorCell ProliferationMultidisciplinaryQRWnt signaling pathwayCell Differentiationmedicine.diseaseG1 Phase Cell Cycle CheckpointsXenograft Model Antitumor Assaysrespiratory tract diseasesErbB Receptorslung cancerAnimals; Carcinoma Non-Small-Cell Lung; Cell Differentiation; Cell Line Tumor; Cell Proliferation; Drug Resistance Neoplasm; ErbB Receptors; G1 Phase Cell Cycle Checkpoints; GATA6 Transcription Factor; Humans; Mice Nude; Protein Kinase Inhibitors; Signal Transduction; Tretinoin; Wnt Signaling Pathway; Xenograft Model Antitumor Assays030104 developmental biologychemistryDrug Resistance NeoplasmImmunologyCancer researchMedicineAdenocarcinomaEngineering sciences. TechnologyTyrosine kinaseSignal Transduction
researchProduct

Human ectonucleotidase-expressing CD25 high Th17 cells accumulate in breast cancer tumors and exert immunosuppressive functions

2015

IF 7.644; International audience; Th17 cells contribute to the development of some autoimmune and allergic diseases by driving tissue inflammation. However, the function of Th17 cells during cancer progression remains controversial. Here, we show that human memory CD25(high) Th17 cells suppress T cell immunity in breast cancer. Ectonucleotidase-expressing Th17 cells accumulated in breast cancer tumors and suppressed CD4(+) and CD8(+) T cell activation. These cells expressed both Ror gamma t and Foxp3 genes and secreted Th17 related cytokines. We further found that CD39 ectonucleotisase expression on tumor-infiltrating Th17 cells was driven by TGF-beta and IL-6. Finally, immunohistochemical …

0301 basic medicineAdenosineT cellImmunologyGeneration[SDV.CAN]Life Sciences [q-bio]/Cancerchemical and pharmacologic phenomenaBiology[ SDV.CAN ] Life Sciences [q-bio]/Cancer03 medical and health sciencesInterleukin 21Immune systembreast cancerCancer stem cellmedicineCd73Immunology and AllergyChemotherapy[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyIL-2 receptorRegulatory T-CellsSuppressionCarcinomaFOXP3hemic and immune systemsSuicide gene3. Good healthReceptor Ccr6030104 developmental biologymedicine.anatomical_structurePhenotypeOncologyImmunologyInterleukin 12[SDV.IMM]Life Sciences [q-bio]/ImmunologyTh17prognosisectonucleotidase
researchProduct