Search results for "cerebral cortex"

showing 10 items of 529 documents

Spatio-temporal dynamics of oscillatory network activity in the neonatal mouse cerebral cortex

2007

We used a 60-channel microelectrode array to study in thick (600-1000 microm) somatosensory cortical slices from postnatal day (P)0-P3 mice the spatio-temporal properties of early network oscillations. We recorded local non-propagating as well as large-scale propagating spontaneous oscillatory activity. Both types of activity patterns could never be observed in neocortical slices of conventional thickness (400 microm). Local non-propagating spontaneous oscillations with an average peak frequency of 15.6 Hz, duration of 1.7 s and maximal amplitude of 66.8 microV were highly synchronized in a network of approximately 200 microm in diameter. Spontaneous oscillations of lower frequency (10.4 Hz…

CarbacholGeneral NeuroscienceGap junctionMultielectrode arrayBiologySomatosensory systemmedicine.anatomical_structureCerebral cortexSubplatemedicineBiological neural networkCholinergicNeurosciencemedicine.drugEuropean Journal of Neuroscience
researchProduct

Chondrodysplasia punctata — Rhizomelic form

1976

Pathologic, ultrastructural and radiologic studies are described on 3 infants with the rhizomelic form of chondrodysplasia punctata. Radiologic criteria in the young infant include radiolucent coronal clefts dividing all or most of the thoracic and lumbar vertebral bodies, short humeri with flared metaphyses and punctate calcifications commonly present adjacent to the ossified ischial and pubic bones and less commonly in other locations. In late infancy and childhood the radiologic criteria include demineralization in all bones with slow maturation, flat vertebral bodies, short humeri and femora, metaphyseal flaring, especially in the distal humerus, proximal femur and proximal tibia, immat…

Cartilage ArticularMalemusculoskeletal diseasesChondrodysplasia PunctataPathologymedicine.medical_specialtyContractureDegeneration (medical)Skin DiseasesBone and BonesCataractInfant Newborn DiseasesLumbarmedicineHumansChondrodysplasia punctataFemurChildPelvisCerebral CortexNeuronsbusiness.industryCartilageMetaphyseal flaringInfant NewbornInfantPatellaAnatomyHumerusCystic Changemedicine.diseaseCartilagemedicine.anatomical_structureChild PreschoolPediatrics Perinatology and Child HealthMicrocephalyFemalePsychomotor DisordersbusinessCancellous boneEuropean Journal of Pediatrics
researchProduct

Altered morphological and electrophysiological properties of Cajal-Retzius cells in cerebral cortex of embryonic Presenilin-1 knockout mice

2004

Mutations of Presenilin-1 are the major cause of familial Alzheimer's disease. Presenilin-1 knockout (PS1-/-) mice develop severe cortical dysplasia related to human type 2 lissencephaly. This overmigration syndrome has been attributed to the premature loss of Cajal-Retzius cells (CRcs), pioneer neurons required for the termination of radial neuronal migration. To elucidate the potential cellular mechanisms responsible for this premature neuronal loss, we investigated the morphological and electrophysiological properties of visually identified CRcs of wild-type (WT) and PS1-/- mouse brains at embryonic day 16.5. The density of CRcs was substantially reduced in the cerebral cortex of PS1-/-.…

Cell Adhesion Molecules NeuronalNerve Tissue ProteinsBiologyBicucullineMembrane PotentialsGABA AntagonistsMicemental disordersExcitatory Amino Acid AgonistsPresenilin-1medicineAnimalsneoplasms6-Cyano-7-nitroquinoxaline-23-dioneCerebral CortexMice KnockoutNeuronsMembrane potentialExtracellular Matrix ProteinsGABAA receptorStem CellsGeneral NeuroscienceSerine EndopeptidasesExcitatory Postsynaptic PotentialsMembrane ProteinsCortical dysplasiaBicucullineEmbryo Mammalianmedicine.diseaseImmunohistochemistryElectric Stimulationdigestive system diseasesnervous system diseasesCell biologyReelin ProteinElectrophysiologymedicine.anatomical_structure2-Amino-5-phosphonovaleratenervous systemCerebral cortexKnockout mouseExcitatory postsynaptic potentialExcitatory Amino Acid AntagonistsNeurosciencemedicine.drugEuropean Journal of Neuroscience
researchProduct

Galantamine modulates nicotinic receptor and blocks Aβ-enhanced glutamate toxicity

2004

Galantamine is a plant alkaloid that is used in the treatment of Alzheimer's disease. We have studied the effects of galantamine on beta-amyloid-enhanced glutamate toxicity using primary rat cultured cortical neurons. Nicotine and galantamine alone, and in combination, protected neurons against this neurotoxicity. The protection was not blocked by alpha4beta2 nicotinic acetylcholine receptor (nAChR) antagonists, but was partially blocked by alpha7 nAChR antagonists. Galantamine induced phosphorylation of Akt, an effector of phosphatidylinositol 3-kinase (PI3K), while PI3K inhibitors blocked the protective effect and Akt phosphorylation. The antibody FK1, which selectively blocks the alloste…

Cell SurvivalBiophysicsGlutamic AcidReceptors NicotinicPharmacologycomplex mixturesBiochemistryNeuroprotectionmedicineGalantamineAnimalsDrug InteractionsMolecular BiologyProtein kinase BPI3K/AKT/mTOR pathwayCerebral CortexNeuronsAmyloid beta-PeptidesDose-Response Relationship DrugGalantamineChemistryGlutamate receptorNeurotoxicityCell Biologymedicine.diseaseRatsNeuroprotective AgentsNicotinic agonistnervous systemPhosphorylationmedicine.drugBiochemical and Biophysical Research Communications
researchProduct

Cellular physiology of the neonatal rat cerebral cortex.

2003

The early development of the cerebral cortex is characterized by neurogenesis, neuronal migration, cellular differentiation and programmed cell death. Cajal-Retzius cells, developing cortical plate neurons and subplate cells form a transient synaptic circuit which may serve as a template for the formation of cortical layers and columns. These three neuronal cell types show distinct electrophysiological properties and synaptic inputs. Endogenous or exogenous harmful disturbances during this developmental period may lead to the preservation of early cortical circuits, which may act as trigger zones for the initiation of pathophysiological activity.

Cell physiologyCerebral CortexNeuronsCell typeGeneral NeuroscienceCellular differentiationNeurogenesisGlutamate receptorAction PotentialsBiologyCell Physiological PhenomenaRatsElectrophysiologymedicine.anatomical_structureAnimals NewbornCerebral cortexSubplatemedicineAnimalsNeuroscienceBrain research bulletin
researchProduct

Lineage-reprogramming of Pericyte-derived Cells of the Adult Human Brain into Induced Neurons

2014

Direct lineage-reprogramming of non-neuronal cells into induced neurons (iNs) may provide insights into the molecular mechanisms underlying neurogenesis and enable new strategies for in vitro modeling or repairing the diseased brain. Identifying brain-resident non-neuronal cell types amenable to direct conversion into iNs might allow for launching such an approach in situ, i.e. within the damaged brain tissue. Here we describe a protocol developed in the attempt of identifying cells derived from the adult human brain that fulfill this premise. This protocol involves: (1) the culturing of human cells from the cerebral cortex obtained from adult human brain biopsies; (2) the in vitro expansio…

Cell typePatch-Clamp TechniquesGeneral Chemical EngineeringCell Culture TechniquesBiologyGeneral Biochemistry Genetics and Molecular BiologySOX2Transduction GeneticmedicineHumansCell LineageCerebral CortexNeuronsGeneral Immunology and MicrobiologyGeneral NeuroscienceSOXB1 Transcription FactorsNeurogenesisHuman brainCell sortingCellular ReprogrammingFlow CytometryImmunohistochemistrymedicine.anatomical_structureRetroviridaeCell culturePericytePericytesNeuroscienceReprogrammingNeuroscience
researchProduct

Differential expression levels of Sox9 in early neocortical radial glial cells regulate the decision between stem cell maintenance and differentiation

2021

ABSTRACTRadial glial progenitor cells (RGCs) in the dorsal forebrain directly or indirectly produce excitatory projection neurons and macroglia of the neocortex. Recent evidence shows that the pool of RGCs is more heterogeneous than originally thought and that progenitor subpopulations can generate particular neuronal cell types. Using single cell RNA sequencing, we have studied gene expression patterns of two subtypes of RGCs that differ in their neurogenic behavior. One progenitor type rapidly produces postmitotic neurons, whereas the second progenitor remains relatively quiescence before generating neurons. We have identified candidate genes that are differentially expressed between thes…

Cell typeTranscription GeneticNeurogenesisEpendymoglial CellsGenetic VectorsNeocortexNerve Tissue ProteinsBiologyMiceradial glia cellsprogenitors diversityGenes ReporterPregnancyGene expressionmedicineAnimalscortical developmentProgenitors diversityCell Self RenewalProgenitor cellPromoter Regions GeneticTranscription factorResearch ArticlesInjections IntraventricularProgenitorNeuronsNeocortexCortical developmentGeneral NeuroscienceCell CycleGene Expression Regulation DevelopmentalSOX9 Transcription FactorEmbryonic stem cellCell biologyMice Inbred C57BLCorticogenesisElectroporationmedicine.anatomical_structureCerebral cortexForebrainFemalesense organsSingle-Cell AnalysisStem cellNeuroscienceNeurogliaRadial glia cellsCellular/MolecularSox9
researchProduct

The effect of cadmium on brain cells in culture

2009

Cadmium is a long-living heavy metal, abundantly present in the environment, which accumulates in the body. In this study, we investigated the effects of cadmium on the expression of molecular chaperones, and of certain cell-specific proteins, in a variety of brain cell types in culture, namely primary cultures of rat cortical neurons and astrocytes, a brain capillary endothelial cell line (RB4E.B cells), and pheochromocytoma cells (PC12), induced or not to differentiate by NGF treatment. The metal induces a dose-dependent increase of Hsp70 in all cell types. Responses to the metal are cell-specific in the case of Hsc70 and Hsp90: i) in astrocytes, as well as in PC12 cells, cadmium has no s…

Cell typecadmium brain cells molecular chaperones PIPPinCell SurvivalCellBlotting Westernchemistry.chemical_elementNerve Tissue ProteinsBiologyPC12 CellsSettore BIO/10 - BiochimicaNerve Growth FactorGeneticsmedicineAnimalsCytoskeletonCell ShapeCells CulturedFluorescent DyesCerebral CortexNeuronsCadmiumBrainEndothelial CellsRNA-Binding ProteinsCell DifferentiationGeneral MedicineCell cycleMolecular biologyHsp70Cell biologyRatsEndothelial stem cellmedicine.anatomical_structurechemistryApoptosisAstrocytesCadmiumMolecular Chaperones
researchProduct

Caveolin and GLT-1 gene expression is reciprocally regulated in primary astrocytes: Association of GLT-1 with non-caveolar lipid rafts

2004

Caveolae represent membrane microdomains acting as integrators of cellular signaling and functional processes. Caveolins are involved in the biogenesis of caveolae and regulate the activity of caveolae-associated proteins. Although caveolin proteins are found in the CNS, the regulation of caveolins in neural cells is poorly described. In the present study, we investigated different modes and mechanisms of caveolin gene regulation in primary rat astrocytes. We demonstrated that activation of cAMP-dependent signaling pathways led to a marked reduction in protein levels of caveolin-1/-2 in cortical astrocytes. Application of transforming growth factor-alpha (TGF-alpha) also resulted in a decre…

Central Nervous SystemCaveolin 2Caveolin 1Down-RegulationGlutamic AcidBiologyCaveolinsHistone DeacetylasesChromatin remodelingRats Sprague-DawleyPhosphatidylinositol 3-KinasesCellular and Molecular NeuroscienceAstrocyte differentiationMembrane MicrodomainsCaveolaeCaveolinCyclic AMPAnimalsRNA MessengerLipid raftCerebral CortexRegulation of gene expressionTransforming Growth Factor alphaRatsCell biologyCaveolin 2Animals NewbornExcitatory Amino Acid Transporter 2Gene Expression RegulationNeurologyAstrocytesCaveolin 1Signal TransductionGlia
researchProduct

The Function of the Caudate Nucleus in the Control of Some Paroxystic Activities in the Neuraxis

1969

(1969). The Function of the Caudate Nucleus in the Control of Some Paroxystic Activities in the Neuraxis. Archives Internationales de Physiologie et de Biochimie: Vol. 77, No. 3, pp. 465-484.

Central Nervous SystemCerebral CortexPhysiologyCaudate nucleusStrychnineBiologyBiochemistryElectric StimulationElectrophysiologySpinal CordPyrazinesOxazinesCatsAnimalsPentylenetetrazolePicrotoxinCaudate NucleusNeuroscienceFunction (biology)Archives Internationales de Physiologie et de Biochimie
researchProduct