Search results for "cfd"
showing 10 items of 249 documents
Cross-Flow Turbine Design For Energy Production And Discharge Regulation
2015
Cross-flow turbines are very efficient and cheap turbines that allow a very good cost/benefit ratio for energy production located at the end of conduits carrying water from a water source to a tank. In this paper a new design procedure for a cross-flow turbine working with a variable flow rate is proposed. The regulation of the head immediately upstream the turbine is faced by adopting a shaped semicircular segment moving around the impeller. The maximum efficiency of the turbine is attained by setting the velocity of the particles entering the impeller at about twice the velocity of the rotating system at the impeller inlet. If energy losses along the pipe are negligible, the semicircular …
Large-Eddy Simulation of Turbulent Flow in an Unbaffled Stirred Tank Driven by a Rushton Turbine
2005
The turbulent flow fieldgeneratedin an unbaffledstirredtank by a Rushton turbine was computedby large-eddy simulation (LES). The Smagorinsky model was used to model the unresolved, or sub-grid, scales. A general purpose CFD code was appropriately modified in order to allow the computation of the sub-gridviscosity andto perform statistics on the computedresults. The numerical predictions were comparedwith the literature results for comparable configurations andwith experimental data obtainedusing particle image velocimetry. A very goodagreement was foundas regards both time-averagedresolv edfield s andturb ulence quantities. 2004 Elsevier Ltd. All rights reserved.
Development of a combined solver to model transport and chemical reactions in catalytic wall-flow filters
2017
Abstract In this work, we develop a non-isothermal model for diesel particulate filters including exothermic and competing chemical reactions. We begin with an isothermal, single-reaction model and we gradually increase its complexity. By comparing various models, we aim at establishing the minimum degree of complexity required to effectively model the system under investigation. Based on the numerical simulations, we conclude that isothermal models are adequate only if the temperature of the catalyst is, at all times, completely below or completely above a critical temperature. However, if the goal is to predict the critical temperature, only non-isothermal models should be used. The resul…
STRUCTURAL OPTIMIZATION OF INNOVATIVE RUDDER FOR HSC
2012
Currently, directional and stability control systems (rudders and flaps) of high speed craft (HSC) are made by steel box-shaped elements. This is mainly caused by the high hydrodynamic stresses applied on these elements due to the high cruising speed of HSC. In order to reduce the weight of these elements and to increase the resistance to external corrosive action, innovative manufacturing technologies and new materials are studied. In this paper, innovative hybrid steel-composite rudder are presented to use in high speed craft.
Analysis of blood flow in one dimensional elastic artery using Navier-Stokes conservation laws
2017
En los últimos años, la simulación computacional en ámbitos médicos ha aumentado notablemente en múltiples ramas de la ciencia, desde modelización a métodos numéricos, pasando por informática. Los principales objetivos de esta disciplina incipiente son comprobar hipótesis antes de una intervención, o ver qué efecto podría tener un medicamento antes de tomarlo, entre otros. En este trabajo deduciremos desde los principios físicos más básicos un modelo unidimensional para la simulación del flujo sanguíneo en arterias elásticas. Proporcionaremos un marco histórico, así como una revisión de este tipo de modelos. Estudiaremos también desde el punto de vista del análisis matemático las ecuaciones…
Theoretical and Experimental Comparison between the Resistance Components of a fast Catamaran in different Configurations
2009
The investigation performed by the Authors represents the most recent development of a research presented in [1] and [2], in which the geometrical solutions of the hull have been obtained through an optimization process, made by using the CFD numerical methods. The most important result of this optimization was the wave resistance reduction, which arrived up to 20% of the total initial resistance. In this further process the hull catamaran model has been built and tested at the towing tanks of the Universities of Naples and Trieste. The results obtained in the numerical process have been compared with the experimental ones and the reliability of the numerical results will be proved. Then th…
Analysis of steady state thermal-hydraulic behaviour of the DEMO Divertor cassette body cooling circuit
2017
Abstract Within the framework of the Work Package DIV 1 – “Divertor Cassette Design and Integration” of the EUROfusion action, a research campaign has been jointly carried out by ENEA and University of Palermo to investigate the thermal-hydraulic performances of the DEMO divertor cassette cooling system. A comparative evaluation study has been performed considering the two different options under consideration for the divertor cassette body coolant, namely subcooled pressurized water and helium. The research activity has been carried out following a theoretical-computational approach based on the finite volume method and adopting a qualified Computational Fluid-Dynamic (CFD) code. CFD analy…
A geometric approach for predicting vertical stationary profiles of weakly inertial advecting-diffusing particles in closed incompressible flows
2004
Abstract Mixing of weakly inertial particles in closed flows is often addressed by considering individual particles as passive advecting-diffusing tracers, subjected to an additional settling velocity resulting from body forces (e.g. gravity). We show that the qualitative and quantitative features of the vertical particle distribution (i.e. the horizontal cross-sectional averages of particle concentration) can be predicted from the structure of the flow resulting from the superposition of the stirring field and the settling velocity. The prediction is based upon the observation that the resulting flow can be divided into two nonoverlapping regions, namely trajectories that are confined with…
Low-Prandtl Number Natural Convection in Volumetrically Heated Rectangular Enclosures - III. Shallow Cavity, AR=0.25
2001
Abstract Natural convection in a volumetrically heated rectangular enclosure filled with a low-Prandtl number (Pr=0.0321) fluid was studied by direct numerical two-dimensional simulation. The enclosure had isothermal side walls and adiabatic top/bottom walls. The aspect ratio was 4 and the Grashof number Gr, based on conductive maximum temperature and cavity width, ranged from 3.79 × 104 to 1.26 × 109. According to the value of Gr, different flow regimes were obtained: steady-state, periodic, and chaotic. The first instability of the steady-state solution occurred at Gr≈3×105; the resulting time-periodic flow field consisted of a central rising plume and of convection rolls, periodically ge…
MHD free convection in a liquid-metal filled cubic enclosure. II. Internal heating
2002
The buoyancy-driven magnetohydrodynamic flow in a liquid-metal filled cubic enclosure was investigated by three-dimensional numerical simulation. The enclosure was differentially heated at two opposite vertical walls, all other walls being adiabatic, and a uniform magnetic field was applied orthogonal to the temperature gradient and to the gravity vector. The Rayleigh number was 105 and the Prandtl number was 0.0321 (characteristic of Pb–17Li at 573 K). The Hartmann number was made to vary between 102 and 103 and the electrical conductance of the walls between 0 and ∞. The continuity, momentum and enthalpy transport equations, in conjunction with a Poisson equation for the electric potentia…