Search results for "chalcogens"

showing 10 items of 11 documents

An investigation of photo- and pressure-induced effects in a pair of isostructural two-dimensional spin-crossover framework materials

2014

International audience; Two new isostructural iron(II) spin-crossover (SCO) framework (SCOF) materials of the type [Fe(dpms)2 (NCX)2 ] (dpms=4,4'-dipyridylmethyl sulfide; X=S (SCOF-6(S)), X=Se (SCOF-6(Se))) have been synthesized. The 2D framework materials consist of undulating and interpenetrated rhomboid (4,4) nets. SCOF-6(S) displays an incomplete SCO transition with only approximately 30 % conversion of high-spin (HS) to low-spin iron(II) sites over the temperature range 300-4 K (T1/2 =75 K). In contrast, the NCSe(-) analogue, SCOF-6(Se), displays a complete SCO transition (T1/2 =135 K). Photomagnetic characterizations reveal quantitative light- induced excited spin-state trapping (LIES…

010405 organic chemistryChemistryIronOrganic ChemistrySpin transitionMineralogyGeneral Chemistry[CHIM.MATE]Chemical Sciences/Material chemistryAtmospheric temperature range010402 general chemistrySpin crossover01 natural sciencesCatalysisLIESST0104 chemical sciencesCoordination polymersChalcogenCrystallographySpin crossoverExcited stateMetastabilityMagnetic propertiesChalcogensIsostructural
researchProduct

Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers

2014

An As2S3 fiber-based supercontinuum source that covers 3500 nm, extending from near visible to the midinfrared, is successfully reported by using a 200-fs-pulsed pump with nJ-level energy at 2.5 μm. The main features of our fiber-based source are two-fold. On the one hand, a low-loss As2S3 microstructured optical fiber has been fabricated, with typical attenuation below 2 dB/m in the 1-4 μm wavelength range. On the other hand, a 20-mm-long microstructured fiber sample is sufficient to enable a spectral broadening, spreading from 0.6 to 4.1 μm in a 40 dB dynamic range.

All-silica fiberPHOSFOSMaterials scienceInfrared Raysbusiness.industryEquipment DesignMicrostructured optical fiberSulfidesArsenicalsAtomic and Molecular Physics and OpticsSupercontinuumEquipment Failure AnalysisOpticsZero-dispersion wavelengthEnergy TransferChalcogensOptoelectronicsDispersion-shifted fiberbusinessPlastic optical fiberOptical FibersPhotonic-crystal fiberOptics Letters
researchProduct

Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources

2010

Made available in DSpace on 2013-08-28T14:12:29Z (GMT). No. of bitstreams: 1 WOS000285749500124.pdf: 1017839 bytes, checksum: f517fd8ef33fd56d66b9ccda9dc4d0f3 (MD5) Made available in DSpace on 2013-09-30T19:22:53Z (GMT). No. of bitstreams: 2 WOS000285749500124.pdf: 1017839 bytes, checksum: f517fd8ef33fd56d66b9ccda9dc4d0f3 (MD5) WOS000285749500124.pdf.txt: 33157 bytes, checksum: 1ca2ac713bf6024674249abf58520bcb (MD5) Previous issue date: 2010-12-06 Submitted by Vitor Silverio Rodrigues (vitorsrodrigues@reitoria.unesp.br) on 2014-05-20T15:34:00Z No. of bitstreams: 2 WOS000285749500124.pdf: 1017839 bytes, checksum: f517fd8ef33fd56d66b9ccda9dc4d0f3 (MD5) WOS000285749500124.pdf.txt: 33157 bytes,…

All-silica fiberPHOSFOSOptical fiberMaterials scienceInfrared RaysChalcogenide glass02 engineering and technologySulfides01 natural sciencesArsenicalslaw.invention010309 opticsOpticsZero-dispersion wavelengthlaw0103 physical sciencesFiber Optic TechnologyLightingMiniaturizationbusiness.industryMicrostructured optical fiber[CHIM.MATE]Chemical Sciences/Material chemistryEquipment Design021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsEquipment Failure Analysis[ CHIM.MATE ] Chemical Sciences/Material chemistryChalcogensGlass0210 nano-technologybusinessHard-clad silica optical fiberPhotonic-crystal fiber
researchProduct

Inhibition of the Cysteine Protease Human Cathepsin L by Triazine Nitriles: Amide⋅⋅⋅Heteroarene π-Stacking Interactions and Chalcogen Bonding in the …

2016

We report an extensive "heteroarene scan" of triazine nitrile ligands of the cysteine protease human cathepsin L (hCatL) to investigate π-stacking on the peptide amide bond Gly67-Gly68 at the entrance of the S3 pocket. This heteroarene⋅⋅⋅peptide bond stacking was supported by a co-crystal structure of an imidazopyridine ligand with hCatL. Inhibitory constants (Ki ) are strongly influenced by the diverse nature of the heterocycles and specific interactions with the local environment of the S3 pocket. Binding affinities vary by three orders of magnitude. All heteroaromatic ligands feature enhanced binding by comparison with hydrocarbon analogues. Predicted energetic contributions from the ori…

ImidazopyridineNitrileStereochemistryCathepsin LPeptideMolecular Dynamics Simulation010402 general chemistryCrystallography X-RayLigands01 natural sciencesBiochemistrychemistry.chemical_compoundAmideDrug DiscoveryHydrolaseNitrilesPeptide bondHumansGeneral Pharmacology Toxicology and PharmaceuticsTriazinePharmacologychemistry.chemical_classificationBinding Sites010405 organic chemistryChemistryLigandTriazinesOrganic ChemistryAmides0104 chemical sciencesProtein Structure TertiaryMolecular MedicineChalcogensQuantum TheoryProtein BindingChemMedChem
researchProduct

Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm

2010

International audience; Microstructured optical fibers (MOFs) are traditionally prepared using the stack and draw technique. In order to avoid the interfaces problems observed in chalcogenide glasses, we have developed a new casting method to prepare the chalcogenide preform. This method allows to reach optical losses around 0.4 dB/m at 1.55 µm and less than 0.05 dB/m in the mid IR. Various As(38)Se(62) chalcogenide microstructured fibers have been prepared in order to combine large non linear index of these glasses with the mode control offered by MOF structures. Small core fibers have been drawn to enhance the non linearities. In one of these, three Stokes order have been generated by Ram…

Materials scienceOptical fiberChalcogenide02 engineering and technology01 natural sciencesOCIS Codes : 060.2270 ; 060.2390 ; 060.4370 ; 160.2750 ; 060.4005law.invention010309 opticschemistry.chemical_compoundsymbols.namesakeOpticsStack (abstract data type)law0103 physical sciencesFiber Optic Technology[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryEquipment Design[CHIM.MATE]Chemical Sciences/Material chemistryMicrostructured optical fiber021001 nanoscience & nanotechnologyCastingAtomic and Molecular Physics and OpticsEquipment Failure AnalysisCore (optical fiber)Nonlinear Dynamicschemistry[ CHIM.MATE ] Chemical Sciences/Material chemistry[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicsymbolsChalcogens[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicGlass0210 nano-technologybusinessRaman scatteringPhotonic-crystal fiberOptics Express
researchProduct

Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber.

2008

International audience; In this work, we investigate the Brillouin and Raman scattering properties of a Ge15Sb20S65 chalcogenide glass microstructured single mode fiber around 1.55 microm. Through a fair comparison between a 2-m long chalcogenide fiber and a 7.9-km long classical single mode silica fiber, we have found a Brillouin and Raman gain coefficients 100 and 180 larger than fused silica, respectively.

Materials scienceSilica fiberLightChalcogenideChalcogenide glass02 engineering and technologySulfidesSpectrum Analysis Raman01 natural sciences010309 opticschemistry.chemical_compound020210 optoelectronics & photonicsOpticsDouble-clad fiberBrillouin scattering0103 physical sciences0202 electrical engineering electronic engineering information engineeringFiber Optic TechnologyScattering RadiationComputer Simulationbusiness.industryMicrostructured optical fiberEquipment Design[CHIM.MATE]Chemical Sciences/Material chemistryModels TheoreticalAtomic and Molecular Physics and OpticsEquipment Failure AnalysischemistryNonlinear Dynamics[ CHIM.MATE ] Chemical Sciences/Material chemistryChalcogensGlassbusinessHard-clad silica optical fiberPhotonic-crystal fiber
researchProduct

Mo 3 Q 7 (Q = S, Se) Clusters Containing Dithiolate/Diselenolate Ligands: Synthesis, Structures, and Their Use as Precursors of Magnetic Single‐Compo…

2013

The coordination chemistry of dithiolene and diselenolene ligands towards the all-selenium [Mo3Se7Br6]2– dianion has been investigated. Complexes (nBu4N)2[Zn(dmit)2] (dmit = 1,3-dithia-2-thioxo-4,5-dithiolate) and (nBu4N)2[Zn(dsit)2] (dsit = 1,3-dithia-2-thioxo-4,5-diselenolate) were employed as ligand precursors. The (nBu4N)2[Zn(dmit)2] complex in acetonitrile at reflux showed unexpected reactivity with [Mo3Se7Br6]2– dianion in which the inner Se atoms were replaced by S (all but the μ3-Se atom) to afford a series of mixed chalcogen [Mo3Se7–xSx(dmit)3]2– (x = 0–6) dianions. Reaction of the [Mo3S4Se3Br6]2– dianion with (nBu4N)2[Zn(dmit)2] under similar conditions also produced a mixed dmit-…

Molybdenumchemistry.chemical_classificationLigandInorganic chemistryCrystal structureCoordination complexConducting materialsInorganic ChemistrySeleniumchemistry.chemical_compoundCrystallographyChalcogenchemistryMagnetic propertiesCluster (physics)ChalcogensAntiferromagnetismReactivity (chemistry)AcetonitrileCluster compoundsEuropean Journal of Inorganic Chemistry
researchProduct

Dispersion Forces and Counterintuitive Steric Effects in Main Group Molecules: Heavier Group 14 (Si-Pb) Dichalcogenolate Carbene Analogues with Sub-9…

2013

The synthesis and spectroscopic and structural characterization of an extensive series of acyclic, monomeric tetrylene dichalcogenolates of formula M(ChAr)2 (M = Si, Ge, Sn, Pb; Ch = O, S, or Se; Ar = bulky m-terphenyl ligand, including two new acyclic silylenes) are described. They were found to possess several unusual features-the most notable of which is their strong tendency to display acute interligand, Ch-M-Ch, bond angles that are often well below 90°. Furthermore, and contrary to normal steric expectations, the interligand angles were found to become narrower as the size of the ligand was increased. Experimental and structural data in conjunction with high-level DFT calculations, in…

Steric effectsMolecular StructureChemistryLigandStereochemistryGeneral ChemistryBiochemistryLondon dispersion forceCatalysischemistry.chemical_compoundCrystallographyColloid and Surface ChemistryMonomerMolecular geometryOrganometallic CompoundsChalcogensQuantum TheoryMoleculeDispersion (chemistry)MethaneCarbeneta116Journal of the American Chemical Society
researchProduct

Exploring reactivity of a bis-sulfonium zirconocene-ate dimer: synthesis of various zwitterionic phosphonium anionic zirconocene complexes

2007

Abstract Formal [3+2] cycloaddition reactions between the bis-sulfonium zirconocene-ate dimer 1a and methylpropiolate, benzaldehyde and carbon disulfide afforded stable zwitterionic phosphonium zirconocene-ate complexes 2–4, respectively, with two orthocondensed five-membered heterocycles. X-ray crystal structure of 4 has been determined. Elemental chalcogens (S, Se, Te) gave rise also to a new variety of five-coordinate zirconium(IV) complexes (5–7) by a formal [3+1] cycloaddition reaction. In these bicyclic zirconates, sulfur is included in a five-membered ring while the second chalcogen is in a four-membered one.

SulfoniumDimer010402 general chemistry01 natural sciencesBiochemistryMedicinal chemistryInorganic ChemistryBenzaldehydechemistry.chemical_compoundChalcogenanionic zirconoceneMaterials ChemistryOrganic chemistry[CHIM.COOR]Chemical Sciences/Coordination chemistryReactivity (chemistry)PhosphoniumPhysical and Theoretical ChemistryComputingMilieux_MISCELLANEOUSBicyclic molecule010405 organic chemistrysulfoniumOrganic Chemistry[ CHIM.COOR ] Chemical Sciences/Coordination chemistryzirconocene-atephosphoniumCycloaddition3. Good health0104 chemical scienceschemistrychalcogenszwitterionic complexes
researchProduct

Demonstration of a reef knot microfiber resonator.

2009

We propose a new way to realize a microfiber optical resonator by implementing the topology of a reef knot using two microfibers. We describe how this structure, which includes 4 ports and can serve as an add-drop filter, can be fabricated. Resonances in an all-silica reef knot are measured and good fits are obtained from a simple resonator model. We also show the feasibility of assembling a hybrid silica-chalcogenide reef knot structure.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]business.product_categoryOptical fiberOptical TweezersTransducersPhysics::Optics02 engineering and technology01 natural sciencesSensitivity and Specificitylaw.invention010309 opticsResonator020210 optoelectronics & photonicsOpticsKnot (unit)lawOscillometry0103 physical sciencesMicrofiber0202 electrical engineering electronic engineering information engineeringQuantitative Biology::Populations and EvolutionFiber Optic TechnologyFiber bundleReefComputingMilieux_MISCELLANEOUSPhysicsgeography[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]geography.geographical_feature_category[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Miniaturizationbusiness.industryReproducibility of ResultsEquipment DesignSilicon DioxideMathematics::Geometric TopologyAtomic and Molecular Physics and OpticsEquipment Failure AnalysisOptical cavityChalcogensComputer-Aided DesignFeasibility StudiesbusinessOptics express
researchProduct