Search results for "chemical engineering"
showing 10 items of 5892 documents
Frozen or dynamic? : An atomistic simulation perspective on the timescales of electrochemical reactions
2023
Electrochemical systems span a wide range of timescales, and several recent works have put forth the idea that the reaction environment should remain frozen and out of equilibrium during electrochemical electron or proton transfer reactions. Furthermore, simplified treatments of the electrochemical interface model the solvent and ions as frozen molecules. However, the claims and practices of a frozen environment strongly clash with most theoretical and simulation approaches developed to study electrochemical reaction rates. It has also been suggested that the electrode potential should not be fixed when simulating reaction rates due to conductivity limitations, which indicates constant pote…
Nonlinear Absorption and Refraction of Picosecond and Femtosecond Pulses in HgTe Quantum Dot Films
2021
We report measurements of the saturated intensities, saturable absorption, and nonlinear refraction in 70-nm thick films containing 4 nm HgTe quantum dots. We demonstrate strong nonlinear refraction and saturable absorption in the thin films using tunable picosecond and femtosecond pulses. Studies were carried out using tunable laser pulses in the range of 400–1100 nm. A significant variation of the nonlinear refraction along this spectral range was demonstrated. The maximal values of the nonlinear absorption coefficients and nonlinear refractive indices determined within the studied wavelength range were −2.4 × 10−5 cm2 W−1 (in the case of 28 ps, 700 nm probe pulses) and −3 × 10−9 cm2 W−1 …
Why Use Interactive Multi-Objective Optimization in Chemical Process Design?
2008
Problems in chemical engineering, like most real-world optimization problems, typically, have several conflicting performance criteria or objectives and they often are computationally demanding, which sets special requirements on the optimization methods used. In this chapter, we point out some shortcomings of some widely used basic methods of multi-objective optimization. As an alternative, we suggest using interactive approaches where the role of a decision maker or a designer is emphasized. Interactive multi-objective optimization has been shown to suit well for chemical process design problems because it takes the preferences of the decision maker into account in an iterative manner tha…
Psychrophiles: A source of cold-adapted enzymes for energy efficient biotechnological industrial processes
2021
Biocatalysts are the backbone of bioprocessing industries that are going through a phase of transition with reference to the requirement of extraordinary enzymes for various biochemical processes. This transition is well reported and documented by various researchers through elucidation of different features and applications of mesophilic and thermophilic enzymes. However, there is little information available about psychrophilic enzymes and their involvement in industrial processes. Therefore, understanding the features and functions of psychrophilic enzymes could suggest some of their novel applications in various industries such as food, agriculture, chemicals, pharmaceuticals, and waste…
Effect of Heat on the Adsorption Properties of Silica Gel
2012
Published version of an article in the journal: International Journal of Engineering and Technology. Also available from the publisher at: http://www.ijetch.org/papers/416-T886.pdf Open access. Adsorption properties of silica gel have been attributed to the surface hydroxyl groups of silica gel. Some hydroxyl groups are free standing and called free silanol groups. Some are hydrogen bonded to neighbouring silanol groups. Christy has shown that a high silanol number and a balanced concentration proportionality between these two different types of hydroxyl groups is necessary for effective adsorption of water molecules. Thermal treatment of silica gel samples alters the proportions of these g…
Influence of a Thiolate Chemical Layer on GaAs (100) Biofunctionalization: An Original Approach Coupling Atomic Force Microscopy and Mass Spectrometr…
2013
International audience; Widely used in microelectronics and optoelectronics; Gallium Arsenide (GaAs) is a III-V crystal with several interesting properties for microsystem and biosensor applications. Among these; its piezoelectric properties and the ability to directly biofunctionalize the bare surface, offer an opportunity to combine a highly sensitive transducer with a specific bio-interface; which are the two essential parts of a biosensor. To optimize the biorecognition part; it is necessary to control protein coverage and the binding affinity of the protein layer on the GaAs surface. In this paper; we investigate the potential of a specific chemical interface composed of thiolate molec…
Amorphous silicon nanotubes
2017
In the following, the attention will be focused on the silicon nanotube (SiNTs) that is a highly desired form of silicon for its fundamental role in the miniaturization trend of the electronic devices. After a description of the properties and applications of SiNTs and their fabrication methods, the attention will be focused on chemical vapour deposition (CVD) template synthesis that is the most usual synthetic method for this material. Then, galvanic template synthesis will be described as a general method for the fabrication of different metals and oxides nanostructures, therefore the use of this technique for synthesizing SiNTs will be detailed. Characterization methods will be also desc…
Study of the Stability of Citrate Capped AgNPs in Several Environmental Water Matrices by Asymmetrical Flow Field Flow Fractionation
2021
Asymmetrical flow field-flow fractionation (AF4) coupled to UV-Vis and dynamic light scattering (DLS) detectors in series, was tested for stability studies of dispersions of citrate-capped silver nanoparticles (AgNPs) in several water matrices. The main goal is to provide knowledge to understand their possible behavior in the environment for short times since mixturing (up to 180 min). Ultrapure (UPW), bottled (BW1, BW2), tap (TW), transitional (TrW) and sea water (SW) matrices were assayed. Observations were compatible with the aggregation of AgNPs, a change in the plasmon band and a size growth with time were done. Fractograms showed different evolution fingerprints in the function of the…
Zinc Adsorption by Activated Carbon Prepared from Lignocellulosic Waste Biomass
2019
Sawdust was used as a precursor for the production of biomass-based activated carbon. Carbonization and activation are single-stage processes, and steam was used as a physical activation agent at 800 °
A fluorescence study of the loading and time stability of doxorubicin in sodium cholate/PEO-PPO-PEO triblock copolymer mixed micelles
2019
Abstract Hypothesis Doxorubicin hydrochloride (DX) is one of the most powerful anticancer agents though its clinical use is impaired by severe undesired side effects. DX encapsulation in nanocarrier systems has been introduced as a mean to reduce its toxicity. Micelles of the nonionic triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) (PEO-PPO-PEO), are very promising carrier systems. The positive charge of DX confines the drug to the hydrophilic corona region of the micelles. The use of mixed micelles of PEO-PPO-PEO copolymers and a negatively charged bile salt should favour the solubilization of DX in the apolar core region of the micelles. Experiments We st…