Search results for "chromosphere"

showing 10 items of 33 documents

The Gaia-ESO Survey: Chromospheric emission, accretion properties, and rotation in gamma Velorum and Chamaeleon

2015

Aims: One of the goals of the Gaia-ESO Survey (GES), which is conducted with FLAMES at the VLT, is the census and the characterization of the low-mass members of very young clusters and associations. We conduct a comparative study of the main properties of the sources belonging to γ Velorum (γ Vel) and Chamaeleon I (Cha I) young associations, focusing on their rotation, chromospheric radiative losses, and accretion. Methods: We used the fundamental parameters (effective temperature, surface gravity, lithium abundance, and radial velocity) delivered by the GES consortium in the first internal data release to select the members of γ Vel and Cha I among the UVES and GIRAFFE spectroscopic obser…

Astrofísicastars: chromospheresAstrophysics::High Energy Astrophysical PhenomenaAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsRotationStars: chromosphereOpen clusters and associations: individual:γVelorumstars: low-massStars: low-maAstrophysics::Solar and Stellar AstrophysicsOpen clusters and associations: individual: Chamaeleon Iopen clusters and associations: individual: γ VelorumQCAstrophysics::Galaxy AstrophysicsQBLine (formation)PhysicsAccretion (meteorology)stars: chromospheres ; stars: low-mass; open clusters and associations: individual: γ VelorumDiagramStars: rotationSpectral densityAstronomy and AstrophysicsAstronomy and AstrophysicStarsDistribution (mathematics)Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceChamaeleonStars: pre-main sequenceAstrophysics::Earth and Planetary AstrophysicsOpen clusters and associations: individual: Chamaeleon I; Open clusters and associations: individual:γVelorum; Stars: chromospheres; Stars: low-mass; Stars: pre-main sequence; Stars: rotation
researchProduct

Magnetohydrodynamic Modeling of the Accretion Shocks in Classical T Tauri Stars: The Role of Local Absorption in the X-Ray Emission

2014

We investigate the properties of X-ray emission from accretion shocks in classical T Tauri stars (CTTSs), generated where the infalling material impacts the stellar surface. Both observations and models of the accretion process reveal several aspects that are still unclear: the observed X-ray luminosity in accretion shocks is below the predicted value, and the density versus temperature structure of the shocked plasma, with increasing densities at higher temperature, deduced from the observations, is at odds with that proposed in the current picture of accretion shocks. To address these open issues we investigate whether a correct treatment of the local absorption by the surrounding medium …

PhysicsShock wave[PHYS]Physics [physics]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and Astrophysicsaccretion accretion disks magnetohydrodynamics: MHD shock waves stars: pre-main sequence X-rays: starsAstrophysicsPlasmaAstrophysics::Cosmology and Extragalactic AstrophysicsAccretion (astrophysics)Spectral lineLuminosityT Tauri starSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAbsorption (electromagnetic radiation)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]ChromosphereSolar and Stellar Astrophysics (astro-ph.SR)ComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy Astrophysics
researchProduct

The effect of ISM absorption on stellar activity measurements and its relevance for exoplanet studies

2017

Past UV and optical observations of stars hosting hot Jupiters have shown that some of these stars present an anomalously low chromospheric activity, significantly below the basal level. For WASP-13, observations have shown that the apparent lack of activity is possibly caused by absorption from the intervening ISM. Inspired by this result, we study the effect of ISM absorption on activity measurements (S and logR'$_{\rm HK}$ indices) for main-sequence late-type stars. To this end, we employ synthetic stellar photospheric spectra combined with varying amounts of chromospheric emission and ISM absorption. We present the effect of ISM absorption on activity measurements by varying several ins…

Stars: activity010504 meteorology & atmospheric sciencesFOS: Physical sciencesAstrophysicsStars: late-typeAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral linePlanets and satellites: general0103 physical sciencesHot JupiterAstrophysics::Solar and Stellar AstrophysicsAbsorption (electromagnetic radiation)010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesISM: generalPhysicsEarth and Planetary Astrophysics (astro-ph.EP)Astronomy and AstrophysicsExoplanetStars: chromospheresStarsActivity measurementsAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceStars: activity; Stars: chromospheres; Stars: late-type; ISM: general; Planets and satellites: generalAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Earth and Planetary Astrophysics
researchProduct

3D YSO accretion shock simulations: a study of the magnetic, chromospheric and stochastic flow effects

2013

AbstractThe structure and dynamics of young stellar object (YSO) accretion shocks depend strongly on the local magnetic field strength and configuration, as well as on the radiative transfer effects responsible for the energy losses. We present the first 3D YSO shock simulations of the interior of the stream, assuming a uniform background magnetic field, a clumpy infalling gas, and an acoustic energy flux flowing at the base of the chromosphere. We study the dynamical evolution and the post-shock structure as a function of the plasma-beta (thermal pressure over magnetic pressure). We find that a strong magnetic field (~hundreds of Gauss) leads to the formation of fibrils in the shocked gas …

PhysicsShock waveAccretion (meteorology)Shock (fluid dynamics)Astrophysics::High Energy Astrophysical PhenomenaFluxAstronomy and AstrophysicsAstrophysicsshock waves[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]magnetohydrodynamics (MHD)Magnetic fieldSettore FIS/05 - Astronomia E AstrofisicaaccretionSpace and Planetary Scienceradiative transferinstabilitiesaccretion magnetohydrodynamics (MHD) radiative transfer shock waves instabilitiesRadiative transferAstrophysics::Solar and Stellar AstrophysicsMagnetic pressureChromosphereAstrophysics::Galaxy Astrophysics
researchProduct

X-ray emission from dense plasma in classical T Tauri stars: hydrodynamic modeling of the accretion shock

2008

Context: High spectral resolution X-ray observations of classical T Tauri stars (CTTSs) demonstrate the presence of plasma at temperature T~2-3×10^6 K and density n_e~10^11-10^13 cm^-3, which are unobserved in non-accreting stars. Stationary models suggest that this emission is due to shock-heated accreting material, but do not allow us to analyze the stability of the material and its position in the stellar atmosphere. Aims: We investigate the dynamics and stability of shock-heated accreting material in classical T Tauri stars and the role of the stellar chromosphere in determining the position and thickness of the shocked region. Methods: We perform one-dimensional hydrodynamic simulation…

PhysicsAccretion (meteorology)Stellar atmosphereAstronomy and AstrophysicsPlasmaAstrophysicsRam pressureLuminosityX-rayStarsSettore FIS/05 - Astronomia E AstrofisicaaccretionprotostarSpace and Planetary ScienceRadiative transferChromospherehydrodynamic
researchProduct

Slender Ca II H fibrils mapping magnetic fields in the low solar chromosphere

2017

S. Jafarzadeh et. al.

010504 meteorology & atmospheric sciencesExtrapolationFOS: Physical scienceschromosphere [Sun]Field strengthAstrophysicsDense forest01 natural sciencesMethods: observational0103 physical sciencesSunriseAstrophysics::Solar and Stellar Astrophysicsobservational [Methods]010303 astronomy & astrophysicsChromosphereSun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSolar observatorySun: chromosphereAstronomy and AstrophysicsMagnetic fieldmagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamics
researchProduct

X-ray emitting MHD accretion shocks in classical T Tauri stars. Case for moderate to high plasma-beta values

2009

AIMS. We investigate the stability and dynamics of accretion shocks in CTTSs, considering the case of beta >= 1 in the post-shock region. In these cases the 1D approximation is not valid and a multi-dimensional MHD approach is necessary. METHODS. We model an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere, by performing 2D axisymmetric MHD simulations. The model takes into account the stellar magnetic field, the gravity, the radiative cooling, and the thermal conduction (including the effects of heat flux saturation). RESULTS. The dynamics and stability of the accretion shock strongly depends on the plasma beta. In the case of shocks with…

Radiative coolingAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesX-rays: starsAstrophysicsstars: pre-main sequenceInstabilitymagnetohydrodynamics (MHD)Settore FIS/05 - Astronomia E AstrofisicaAstrophysics::Solar and Stellar AstrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)accretion accretion disksStellar magnetic fieldStellar atmosphereAstronomy and Astrophysicsshock wavesAccretion (astrophysics)T Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceinstabilitiesMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Acoustic Wave Properties in Footpoints of Coronal Loops in 3D MHD Simulations

2021

Acoustic waves excited in the photosphere and below might play an integral part in the heating of the solar chromosphere and corona. However, it is yet not fully clear how much of the initially acoustic wave flux reaches the corona and in what form. We investigate the wave propagation, damping, transmission, and conversion in the lower layers of the solar atmosphere using 3D numerical MHD simulations. A model of a gravitationally stratified expanding straight coronal loop, stretching from photosphere to photosphere, is perturbed at one footpoint by an acoustic driver with a period of 370 seconds. For this period acoustic cutoff regions are present below the transition region (TR). About 2% …

PhysicsPhotosphere010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaSolar physics Solar atmosphere Solar oscillations Solar coronal waves Solar chromosphere Solar coronal loops Magnetohydrodynamical simulations MagnetohydrodynamicsFOS: Physical sciencesAstronomy and AstrophysicsAcoustic waveCoronal loop01 natural sciencesCoronaComputational physicsStanding waveAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary Science0103 physical sciencesCutoffAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamics010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesThe Astrophysical Journal
researchProduct

Impacts of fragmented accretion streams onto Classical T Tauri Stars: UV and X-ray emission lines

2016

Context. The accretion process in Classical T Tauri Stars (CTTSs) can be studied through the analysis of some UV and X-ray emission lines which trace hot gas flows and act as diagnostics of the post-shock downfalling plasma. In the UV band, where higher spectral resolution is available, these lines are characterized by rather complex profiles whose origin is still not clear. Aims. We investigate the origin of UV and X-ray emission at impact regions of density structured (fragmented) accretion streams.We study if and how the stream fragmentation and the resulting structure of the post-shock region determine the observed profiles of UV and X-ray emission lines. Methods. We model the impact of…

Physics010504 meteorology & atmospheric sciencesstars:pre-mainsequenceFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsPlasma01 natural sciencesAccretion (astrophysics)RedshiftT Tauri starSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Scienceaccretionaccretion disks0103 physical sciencesEmission spectrumSpectral resolutionMagnetohydrodynamics010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciences
researchProduct

3D numerical modeling of YSO accretion shocks

2013

International audience; The dynamics of YSO accretion shocks is determined by radiative processes as well as the strength and structure of the magnetic field. A quasi-periodic emission signature is theoretically expected to be observed, but observations do not confirm any such pattern. In this work, we assume a uniform background field, in the regime of optically thin energy losses, and we study the multi-dimensional shock evolution in the presence of perturbations, i.e. clumps in the stream and an acoustic energy flux flowing at the base of the chromosphere. We perform 3D MHD simulations using the PLUTO code, modeling locally the impact of the infalling gas onto the chromosphere. We find t…

PhysicsAccretion (meteorology)Field (physics)PhysicsQC1-999Astrophysics::High Energy Astrophysical PhenomenaFluxAstrophysics[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Magnetic fieldSettore FIS/05 - Astronomia E Astrofisica13. Climate actionRadiative transferMagnetic pressureMagnetohydrodynamicsaccretion shocksChromosphereAstrophysics::Galaxy Astrophysics
researchProduct