Search results for "clathrates"
showing 6 items of 6 documents
Ab initio computational study on the lattice thermal conductivity of Zintl clathrates [Si19P4]Cl4 and Na4[Al4Si19]
2016
The lattice thermal conductivity of silicon clathrate framework Si23 and two Zintl clathrates, [Si19P4]Cl4 and Na4[Al4Si19], is investigated by using an iterative solution of the linearized Boltzmann transport equation in conjunction with ab initio lattice dynamical techniques. At 300 K, the lattice thermal conductivities for Si23, [Si19P4]Cl4, and Na4[Al4Si19] were found to be 43 W/(m K), 25 W/(m K), and 2 W/(m K), respectively. In the case of Na4[Al4Si19], the order-of-magnitude reduction in the lattice thermal conductivity was found to be mostly due to relaxation times and group velocities differing from Si23 and [Si19P4]Cl4. The difference in the relaxation times and group velocities ar…
Epitaxial Thin-Film vs Single Crystal Growth of 2D Hofmann-Type Iron(II) Materials: A Comparative Assessment of their Bi-Stable Spin Crossover Proper…
2020
Integration of the ON-OFF cooperative spin crossover (SCO) properties of FeII coordination polymers as components of electronic and/or spintronic devices is currently an area of great interest for potential applications. This requires the selection and growth of thin films of the appropriate material onto selected substrates. In this context, two new series of cooperative SCO two-dimensional FeII coordination polymers of the Hofmann-type formulated {FeII(Pym)2[MII(CN)4]·xH2O}n and {FeII(Isoq)2[MII(CN)4]}n (Pym = pyrimidine, Isoq = isoquinoline; MII = Ni, Pd, Pt) have been synthesized, characterized, and the corresponding Pt derivatives selected for fabrication of thin films by liquid-phase …
Molecular simulation of mixed gas hydrates in astrophysical conditions
2020
In this PhD work, numerical simulation methods have been used in order to model clathrate hydrates at the molecular scale, in thermodynamic conditions typical of astrophysical contexts. The aim was to characterize the trapping abilities of those peculiar structures of water, by means of the tools used in adsorption studies. The results presented in the present thesis are focused on a couple of chemical species which are found to be abundant in our astrophysical vicinity and are quite similar: carbon monoxide, CO, and nitrogen, N2. Thus, the single-component clathrates of CO and N2, and the mixed hydrate CO-N2 have been studied, mainly using grand canonical Monte Carlo simulations. First, th…
Guest Modulation of Spin-Crossover Transition Temperature in a Porous Iron(II) Metal Organic Framework: Experimental and Periodic DFT Studies
2014
The synthesis, structure, and magnetic properties of three clathrate derivatives of the spin-crossover porous coordination polymer {Fe(pyrazine)[Pt(CN)(4)]} (1) with five-membered aromatic molecules furan, pyrrole, and thiophene is reported. The three derivatives have a cooperative spin-crossover transition with hysteresis loops 14-29 K wide and average critical temperatures T-c=201 K (1.fur), 167 K (1.pyr), and 114.6 K (1.thio) well below that of the parent compound 1 (T-c=295 K), confirming stabilization of the HS state. The transition is complete and takes place in two steps for 1.fur, while 1.pyr and 1.thio show 50% spin transition. For 1.fur the transformation between the HS and IS (mi…
Tunable Spin-Crossover Behavior of the Hofmann-like Network {Fe(bpac)[Pt(CN) 4 ]} through Host-Guest Chemistry
2013
A study of the spin-crossover (SCO) behavior of the tridimensional porous coordination polymer {Fe(bpac)[Pt(CN)4]} (bpac=bis(4-pyridyl) acetylene) on adsorption of different mono- and polyhalobenzene guest molecules is presented. The resolution of the crystal structure of {Fe(bpac)[Pt(CN) 4]}A?G (G=1,2,4-trichlorobenzene) shows preferential guest sites establishing I?A?A?A?I? stacking interactions with the host framework. These host-guest interactions may explain the relationship between the modification of the SCO behavior and both the chemical nature of the guest molecule (electronic factors) and the number of adsorbed molecules (steric factors). Copyright © 2013 WILEY-VCH Verlag GmbH & …
Computational and theoretical studies on lattice thermal conductivity and thermal properties of silicon clathrates
2016
The lattice thermal conductivity is usually an intrinsic property in the study of thermoelectricity. In particular, relatively low lattice thermal conductivity is usually a desired feature when higher thermoelectric efficiency is pursued. The mechanisms which lower the lattice thermal conductivity are not known in sufficient detail and deeper understanding about the phenomena is needed and if such understanding is achieved it can be used to design more efficient thermoelectric materials. In this thesis, the lattice thermal conductivity and other thermal properties of several silicon clathrates, which are known to be promising candidates for the thermoelectric applications, are studied by theoreti…