Search results for "clusters"

showing 10 items of 1274 documents

An efficient cluster-based outdoor user positioning using LTE and WLAN signal strengths

2015

In this paper we propose a novel cluster-based RF fingerprinting method for outdoor user-equipment (UE) positioning using both LTE and WLAN signals. It uses a simple cost effective agglomerative hierarchical clustering with Davies-Bouldin criterion to select the optimal cluster number. The positioning method does not require training signature formation prior to UE position estimation phase. It is capable of reducing the search space for clustering operation by using LTE cell-ID searching criteria. This enables the method to estimate UE positioning in short time with less computational expense. To validate the cluster-based positioning real-time field measurements were collected using readi…

ta113SIMPLE (military communications protocol)business.industryComputer scienceReal-time computingLTE cell-IDFingerprint recognitionGridminimization of drive testsDetermining the number of clusters in a data setEmbedded systemgrid-based RF fingerprintingRadio frequencybusinessCluster analysishierarchical clustering
researchProduct

Theoretical Analysis of the M12Ag32(SR)404– and X@M12Ag32(SR)304– Nanoclusters (M = Au, Ag; X = H, Mn)

2014

We analyze the electronic structure and optical properties of the recently reported, structurally known M12Ag32(SR)304– clusters (M = Au, Ag) by using density functional theory and time-dependent density functional perturbation theory. Effects of the chemical changes in the metal core, charge of the cluster, and nature of the thiolate ligand on the electronic structure and optical absorption are reported. In addition, doping the metal core with a magnetic transition metal atom (Mn) or hydrogen (protons) is discussed. Although all these clusters can be considered as 18-electron superatoms with a shell configuration 1S2 1P6 1D10, we find that the optical spectrum is sensitive to the charge st…

ta114ChemistryDopingnanoclustersElectronic structurechemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsNanoclustersMetalCrystallographyGeneral EnergyTransition metalvisual_artAtomCluster (physics)visual_art.visual_art_mediumDensity functional theoryPhysical and Theoretical ChemistryAtomic physicsta116physicsJournal of Physical Chemistry C
researchProduct

Jahn–Teller effects in Au25(SR)18

2016

The relationship between oxidation state, structure, and magnetism in many molecules is well described by first-order Jahn–Teller distortions. This relationship is not yet well defined for ligated nanoclusters and nanoparticles, especially the nano-technologically relevant gold-thiolate protected metal clusters. Here we interrogate the relationships between structure, magnetism, and oxidation state for the three stable oxidation states, −1, 0 and +1 of the thiolate protected nanocluster Au25(SR)18. We present the single crystal X-ray structures of the previously undetermined charge state Au25(SR)18+1, as well as a higher quality single crystal structure of the neutral compound Au25(SR)180. …

ta114ChemistryMagnetismJahn–Teller effectNanoparticleJahn–Teller distortions02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesNanoclusterslaw.inventionSQUIDCrystallographyOxidation statelawMolecule0210 nano-technologySingle crystalta116gold nanoclustersChemical Science
researchProduct

Total Structure and Electronic Structure Analysis of Doped Thiolated Silver [MAg24(SR)18]2– (M = Pd, Pt) Clusters

2015

With the incorporation of Pd or Pt atoms, thiolated Ag-rich 25-metal-atom nanoclusters were successfully prepared and structurally characterized for the first time. With a composition of [PdAg24(SR)18](2-) or [PtAg24(SR)18](2-), the obtained 25-metal-atom nanoclusters have a metal framework structure similar to that of widely investigated Au25(SR)18. In both clusters, a M@Ag12 (M = Pd, Pt) core is capped by six distorted dimeric -RS-Ag-SR-Ag-SR- units. However, the silver-thiolate overlayer gives rise to a geometric chirality at variance to Au25(SR)18. The effect of doping on the electronic structure was studied through measured optical absorption spectra and ab initio analysis. This work d…

ta114ChemistryStereochemistryDopingAb initioGeneral ChemistryElectronic structureengineering.materialpalladiumBiochemistryCatalysissilver nanoclustersNanoclustersCatalysisOverlayerCrystallographyColloid and Surface ChemistryengineeringNoble metalplatinumChirality (chemistry)ta116thiolsJournal of the American Chemical Society
researchProduct

Structural Evolution of Atomically Precise Thiolated Bimetallic [Au12+nCu32(SR)30+n]4– (n = 0, 2, 4, 6) Nanoclusters

2014

A series of all-thiol stabilized bimetallic Au-Cu nanoclusters, [Au(12+n)Cu32(SR)(30+n)](4-) (n = 0, 2, 4, 6 and SR = SPhCF3), are successfully synthesized and characterized by X-ray single-crystal analysis and density functional theory (DFT) calculations. Each cluster consists of a Keplerate two-shell Au12@Cu20 core protected by (6 - n) units of Cu2(SR)5 and n units of Cu2Au(SR)6 (n = 0, 2, 4, 6) motifs on its surface. The size and structural evolution of the clusters is atomically controlled by the Au precursors and countercations used in the syntheses. The clusters exhibit similar optical absorption properties that are not dependent on the number of surface Cu2Au(SR)6 units. Although DFT…

ta114ChemistrySuperatomGeneral ChemistryCrystal structureElectronic structureBiochemistryCatalysisNanoclustersCrystallographyColloid and Surface ChemistryNanocrystalCluster (physics)Density functional theoryta116Bimetallic stripJournal of the American Chemical Society
researchProduct

Optical Properties of Monolayer-Protected Aluminum Clusters: Time-Dependent Density Functional Theory Study

2015

We examine the electronic and optical properties of experimentally known monolayer-protected aluminum clusters Al4(C5H5)4, Al50(C5Me5)12, and Al69(N(SiMe3)2)183– using time-dependent density functional theory. By comparing Al4(C5H5)4 and the theoretical Al4(N(SiMe3)2)4 cluster, we observe significant changes in the optical absorption spectra caused by different hybridization between metal core and ligands. Using these initial observations, we explain the calculated spectra of Al50(C5Me5)12 and Al69(N(SiMe3)2)183–. Al50(C5Me5)12 shows a structured spectrum with clear regions of low-intensity core-to-core transitions followed by high-intensity ligand-to-core transitions due to its high symmet…

ta114Chemistrychemistry.chemical_elementTime-dependent density functional theorySpectral lineSymmetry (physics)3. Good healthSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsaluminum clustersMetalCrystallographytime-dependent density functional theoryGeneral EnergyAluminiumvisual_artMonolayervisual_art.visual_art_mediumCluster (physics)Density functional theoryPhysical and Theoretical Chemistryta116Journal of Physical Chemistry C
researchProduct

A Unified AMBER-Compatible Molecular Mechanics Force Field for Thiolate-Protected Gold Nanoclusters.

2016

We present transferable AMBER-compatible force field parameters for thiolate-protected gold nanoclusters. Five different sized clusters containing both organo-soluble and water-soluble thiolate ligands served as test systems in MD simulations, and parameters were validated against DFT and experimental results. The cluster geometries remain intact during the MD simulations in various solvents, and structural fluctuations and energetics showed agreement with DFT calculations. Experimental diffusion coefficients and crystal structures were also reproduced with sufficient accuracy. The presented parameter set contains the minimum number of cluster-specific parameters enabling the use of these p…

ta114Chemistrythiolate ligands02 engineering and technologyCrystal structure010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesMolecular mechanicsForce field (chemistry)0104 chemical sciencesComputer Science ApplicationsNanoclustersComputational chemistryChemical physicsCluster (physics)Physical and Theoretical Chemistry0210 nano-technologyta116gold nanoclustersJournal of chemical theory and computation
researchProduct

Symmetry breaking in ligand-protected gold clusters probed by nonlinear optics

2016

The first hyperpolarizabilities of [Au25(SR)18](-1/0) and Au38(SR)24 clusters were determined by Hyper-Rayleigh Scattering. A strong dependence on the molecular symmetry was observed, and we explore two strategies to destroy the center of inversion in [Au25(SR)18](-1/0), protection by chiral ligands and alloying of the cluster with silver. This may open new avenues to applications of Au : SR clusters in second-order nonlinear optics.

ta114Condensed matter physicsligandsChemistryScatteringLigandnonlinear opticsNonlinear optics02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologygold clusters01 natural sciencesMolecular physics0104 chemical sciencesmolecular symmetryMolecular symmetryCluster (physics)General Materials ScienceSymmetry breaking0210 nano-technologyta116Nanoscale
researchProduct

The Role of the Anchor Atom in the Ligand of the Monolayer-Protected Au25(XR)18– Nanocluster

2015

We present a density functional theory (DFT) investigation on the role of the anchor atom and ligand on the structural, electronic, and optical properties of the anionic Au25(XR)18– nanocluster (X = S, Se, Te; R = H, CH3, and (CH2)2Ph). Substituting the anchor atom with other group 16 elements induces subtle changes in the Au–Au and Au–X bond lengths and polarization of the covalent bond. The changes in the electronic structure based on substituting both the anchor and R groups are presented through careful analysis of the density of states and theoretical determined optical spectra. We give a detailed side-by-side comparison into the structural, electronic, and optical properties of Au25(X…

ta114LigandChemistryligandsElectronic structureanchor atomsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBond lengthCrystallographyGeneral EnergyCovalent bondComputational chemistryAtomMonolayerDensity of statesDensity functional theoryPhysical and Theoretical Chemistryta116gold nanoclustersJournal of Physical Chemistry C
researchProduct

Gold Au(I)6 Clusters with Ligand-Derived Atomic Steric Locking: Multifunctional Optoelectrical Properties and Quantum Coherence

2023

Funding Information: This work was supported by the ERC Advanced grant (DRIVEN, ERC‐2016‐AdG‐742829), the ERC grant (834742), the EU H2020‐MSCA‐RISE‐872049 (IPN‐Bio), the Academy of Finland's Centre of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials Research (HYBER, 2014–2019), and Life‐Inspired Hybrid Materials (LIBER, 346108), Academy of Finland project fundings (No. 352900, 314810, 333982, 336144, 352780, 352930 and 353364), FinnCERES and Photonics Research and Innovation (PREIN) flagship programs. The authors acknowledge the provision of facilities and technical support by Aalto University OtaNano – Nanomicroscopy Center (Aalto‐NMC). | openaire: EC/H2020/834742/EU//…

third-harmonic generationquantum coherenceSettore FIS/01 - Fisica Sperimentalenanoclustersfield effect transistorsphotoluminescenceAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materials
researchProduct