Search results for "coalgebra"

showing 5 items of 5 documents

The dual equivalence of equations and coequations for automata

2015

The transition structure α : X ? X A of a deterministic automaton with state set X and with inputs from an alphabet A can be viewed both as an algebra and as a coalgebra. We use this algebra-coalgebra duality as a common perspective for the study of equations and coequations. For every automaton ( X , α ) , we define two new automata: free ( X , α ) and cofree ( X , α ) representing, respectively, the greatest set of equations and the smallest set of coequations satisfied by ( X , α ) . Both constructions are shown to be functorial. Our main result is that the restrictions of free and cofree to, respectively, preformations of languages and to quotients A * / C of A * with respect to a congr…

CoalgebraData ScienceCongruence relationComputer Science ApplicationsTheoretical Computer ScienceAutomatonCombinatoricsComputational Theory and MathematicsDeterministic automatonComputingMethodologies_DOCUMENTANDTEXTPROCESSINGAlphabetEquivalence (formal languages)QuotientInformation SystemsMathematics
researchProduct

Varieties and Covarieties of Languages (Extended Abstract)

2013

AbstractBecause of the isomorphism (X×A)→X≅X→(A→X), the transition structure of a deterministic automaton with state set X and with inputs from an alphabet A can be viewed both as an algebra and as a coalgebra. This algebra-coalgebra duality goes back to Arbib and Manes, who formulated it as a duality between reachability and observability, and is ultimately based on Kalmanʼs duality in systems theory between controllability and observability. Recently, it was used to give a new proof of Brzozowskiʼs minimization algorithm for deterministic automata. Here we will use the algebra-coalgebra duality of automata as a common perspective for the study of both varieties and covarieties, which are …

Discrete mathematicsGeneral Computer ScienceCoalgebraData ScienceStructure (category theory)Duality (optimization)equationalgebraAutomataTheoretical Computer ScienceAlgebravarietyReachabilityDeterministic automatonComputingMethodologies_DOCUMENTANDTEXTPROCESSINGcoequationObservabilityIsomorphismcovarietyVariety (universal algebra)coalgebraComputer Science::Formal Languages and Automata TheoryComputer Science(all)MathematicsElectronic Notes in Theoretical Computer Science
researchProduct

Algebra Structures on Hom(C,L)

1999

info:eu-repo/semantics/published

High Energy Physics - TheoryNon-associative algebraFOS: Physical sciencesUniversal enveloping algebra01 natural sciencesGraded Lie algebraMathematics::K-Theory and HomologyMathematics::Category TheoryMathematics::Quantum Algebra0103 physical sciencesMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)0101 mathematicsMathematicsAlgebra and Number TheoryQuantum groupPhysique010102 general mathematicsSubalgebraMathematics::Rings and AlgebrasLie conformal algebraAlgebraLie coalgebraHigh Energy Physics - Theory (hep-th)Algebra representation010307 mathematical physics
researchProduct

The Bianchi variety

2010

The totality Lie(V) of all Lie algebra structures on a vector space V over a field F is an algebraic variety over F on which the group GL(V) acts naturally. We give an explicit description of Lie(V) for dim V=3 which is based on the notion of compatibility of Lie algebra structures.

Mathematics - Differential GeometryPure mathematicsSimple Lie groupAdjoint representationAffine Lie algebra13D10 14D99 17B99 53D99Graded Lie algebraLie conformal algebraAlgebraAdjoint representation of a Lie algebraLie coalgebraRepresentation of a Lie groupDifferential Geometry (math.DG)Computational Theory and MathematicsFOS: MathematicsGeometry and TopologyAnalysisMathematicsDifferential Geometry and its Applications
researchProduct

A description based on languages of the final non-deterministic automaton

2014

The study of the behaviour of non-deterministic automata has traditionally focused on the languages which can be associated to the different states. Under this interpretation, the different branches that can be taken at every step are ignored. However, we can also take into account the different decisions which can be made at every state, that is, the branches that can be taken, and these decisions might change the possible future behaviour. In this case, the behaviour of the automata can be described with the help of the concept of bisimilarity. This is the kind of description that is usually obtained when the automata are regarded as labelled transition systems or coalgebras. Contrarily t…

Nested wordTheoretical computer scienceGeneral Computer ScienceTimed automatonLlenguatges de programacióω-automatonTheoretical Computer ScienceDeterministic pushdown automatonCoalgebraFinal automatonDeterministic automatonQuantum finite automataAutomatitzacióComputer Science::DatabasesMathematicsDiscrete mathematicsNonlinear Sciences::Cellular Automata and Lattice GasesNon-deterministic automatonMobile automatonBisimilarityComputer Science::Programming LanguagesAutomata theoryFormal languageÀlgebraMATEMATICA APLICADAComputer Science::Formal Languages and Automata Theory
researchProduct