Search results for "common emitter"
showing 10 items of 42 documents
Obstructing propagation of interfering modes improves detection of guided waves in coated bone models
2014
Interference due to wave propagation in soft tissue that covers the bone is a major challenge to in vivo assessment of the fundamental flexural guided wave (FFGW) in bone. To improve signal-to-interference ratio (SIR) we propose to obstruct the propagation of interfering modes by locally deforming the coating by external mechanical compression. This approach was modeled by 2D finite-element transient domain (FEMTD) simulations in a fluid-coated (7 mm) solid plate (3 mm). The fluid layer mimics the soft tissue that covers the bone. A single emitter or a 6-element phased array excited ultrasound pulses at 50 kHz on the surface of the coating, and a receiver array was placed on the surface, 20…
Experimental Investigation for Local Tank Inflow Model
2014
In the present paper the effect of private roof tanks and of the float valve characteristics on apparent losses due to water meter errors was investigated via an experimental study. The tests were carried out at the Environmental Hydraulic Laboratory of the University of Enna (Italy), on a high-density polyethylene (HDPE 100 PN16) looped distribution network. The experimental results showed that network pressure plays an important role in the characterisation of the floating ball valve emitter law, but the tank operating condition is the most relevant aspect to be considered mainly for water meter error evaluation. (C) 2014 The Authors. Published by Elsevier Ltd.
2016
Two light-emitting polyphenylene dendrimers with both hole and electron transporting moieties were synthesized and characterized. Both molecules exhibited pure blue emission solely from the pyrene core and efficient surface-to-core energy transfers when characterized in a nonpolar environment. In particular, the carbazole- and oxadiazole-functionalized dendrimer (D1) manifested a pure blue emission from the pyrene core without showing intramolecular charge transfer (ICT) in environments with increasing polarity. On the other hand, the triphenylamine- and oxadiazole-functionalized one (D2) displayed notable ICT with dual emission from both the core and an ICT state in highly polar solvents. …
Light-emitting electrochemical cells: recent progress and future prospects
2014
We provide a short review on light-emitting electrochemical cells (LECs), one of the simplest kinds of electroluminescent devices. In their simplest form, they consist of just one active layer containing an emitter and a salt. They operate with low voltages, which allows for high power efficiencies, and air-stable electrodes, which simplifies the encapsulation requirements. The aim of this review is to highlight the recent advances and the main remaining challenges. We describe the current understanding of their peculiar operation mechanism and focus on the major concepts used to improve their performance.
Temperature Sensitivity of Multicrystalline Silicon Solar Cells
2019
This paper presents an experimental investigation of the temperature coefficients of multicrystalline silicon solar cells. The aim was to determine if some cell parameters can affect positively the temperature sensitivity without detrimental impact on the efficiency. Commercial solar cells with different bulk resistivities, compensation levels, and cell architectures have been studied. We report that the base net doping, the location of the solar cell along the brick and the cell architecture have significant impacts on the temperature coefficients. Moreover, we show how the change in recombination mechanisms along the ingot height affects the temperature coefficients. The compensation leve…
Highly phosphorescent perfect green emitting iridium(iii) complex for application in OLEDs.
2007
A novel iridium complex, [bis-(2-phenylpyridine)(2-carboxy-4-dimethylaminopyridine)iridium(III)] (N984), was synthesized and characterized using spectroscopic and electrochemical methods; a solution processable OLED device incorporating the N984 complex displays electroluminescence spectra with a narrow bandwidth of 70 nm at half of its intensity, with colour coordinates of x = 0.322; y = 0.529 that are very close to those suggested by the PAL standard for a green emitter. Bolink, Henk, Henk.Bolink@uv.es ; Coronado Miralles, Eugenio, Eugenio.Coronado@uv.es ; Garcia Santamaria, Sonsoles Amor, Sonsoles.Garcia@uv.es
Low Current Density Driving Leads to Efficient, Bright and Stable Green Electroluminescence
2013
Electroluminescent devices have the potential to reshape lighting and display technologies by providing low-energy consuming solutions with great aesthetic features, such as flexibility and transparency. In particular, light-emitting electrochemical cells (LECs) are among the simplest electro-luminescent devices. The device operates with air-stable materials and the active layer can be resumed to an ionic phosphorescent emitter. As a consequence, LECs can be assembled using solution-process technologies, which could allow for low-cost and large-area lighting applications in the future. High efficiencies have been reported at rather low luminances (<50 cd m(-2)) and at very low current densi…
Impact of pump wavelength on terahertz emission of a cavity-enhanced spintronic trilayer
2018
We systematically study the pump-wavelength dependence of terahertz pulse generation in thin-film spintronic THz emitters composed of a ferromagnetic Fe layer between adjacent nonmagnetic W and Pt layers. We find that the efficiency of THz generation is essentially at for excitation by 150 fs pulses with center wavelengths ranging from 900 to 1500 nm, demonstrating that the spin current does not depend strongly on the pump photon energy. We show that the inclusion of dielectric overlayers of TiO2 and SiO2, designed for a particular excitation wavelength, can enhance the terahertz emission by a factor of of up to two in field.
Correlating the Lifetime and Fluorine Content of Iridium(III) Emitters in Green Light-Emitting Electrochemical Cells
2013
In light-emitting electrochemical cells, the lifetime of the device is intrinsically linked to the stability of the phosphorescent emitter. In this study, we present a series of ionic iridium(III) emitters based on cyclometalating phenylpyridine ligands whose fluorine substituents are varied in terms of position and number. Importantly, despite these structural modifications, the emitters exhibit virtually identical electrochemical and spectroscopic properties, which allows for proper comparison in functional devices. Quantum chemical calculations support the properties measured in solution and suggest great similarities regarding the electronic structures of the emitters. In electrolumines…
Spectroscopic factor and proton formation probability for the d3/2 proton emitter 151Lu
2017
The quenching of the experimental spectroscopic factor for proton emission from the short-lived $d_{3/2}$ isomeric state in $^{151m}$Lu was a long-standing problem. In the present work, proton emission from this isomer has been reinvestigated in an experiment at the Accelerator Laboratory of the University of Jyv\"{a}skyl\"{a}. The proton-decay energy and half-life of this isomer were measured to be 1295(5) keV and 15.4(8) $\mu$s, respectively, in agreement with another recent study. These new experimental data can resolve the discrepancy in the spectroscopic factor calculated using the spherical WKB approximation. Using the R-matrix approach it is found that the proton formation probabilit…