Search results for "complexe"

showing 10 items of 920 documents

Photoactivation of Anticancer Ru Complexes in Deep Tissue: How Deep Can We Go?

2017

Activation of anticancer therapeutics such as ruthenium (Ru) complexes is currently a topic of intense investigation. The success of phototherapy relies on photoactivation of therapeutics after the light passes through skin and tissue. In this paper, the photoactivation of anticancer Ru complexes with 671-nm red light through tissue of different thicknesses was studied. Four photoactivatable Ru complexes with different absorption wavelengths were synthesized. Two of them (Ru3 and Ru4) were responsive to wavelengths in the “therapeutic window” (650–900 nm) and could be activated using 671-nm red light after passing through tissue up to 16-mm-thick. The other two (Ru1 and Ru2) could not be ac…

Cell SurvivalInfrared Rayschemistry.chemical_elementAntineoplastic Agents02 engineering and technologyAbsorption (skin)010402 general chemistryPhotochemistry01 natural sciencesCatalysisRutheniumMETALLODRUGDeep tissueCoordination ComplexesHumansRed lightPHOTOTHERAPYTherapeutic windowChemistryPHOTOCHEMISTRYOtras Ciencias QuímicasOrganic ChemistryLight activatedCiencias QuímicasGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesRutheniumRU COMPLEXSpectrophotometryCancer cellANTICANCER0210 nano-technologyCIENCIAS NATURALES Y EXACTASHeLa Cells
researchProduct

Ditopic Aza-Scorpiand Ligands Interact Selectively with ds-RNA and Modulate the Interaction upon Formation of Zn2+ Complexes

2021

Nucleic acids are essential biomolecules in living systems and represent one of the main targets of chemists, biophysics, biologists, and nanotechnologists. New small molecules are continuously developed to target the duplex (ds) structure of DNA and, most recently, RNA to be used as therapeutics and/or biological tools. Stimuli-triggered systems can promote and hamper the interaction to biomolecules through external stimuli such as light and metal coordination. In this work, we report on the interaction with ds-DNA and ds-RNA of two aza-macrocycles able to coordinate Zn2+ metal ions and form binuclear complexes. The interaction of the aza-macrocycles and the Zn2+ metal complexes with duple…

Cell SurvivalMetal ions in aqueous solutionÀcids nucleicsPharmaceutical Science010402 general chemistryLigands01 natural sciencesArticleAnalytical ChemistryMetalchemistry.chemical_compoundQD241-441Coordination ComplexesCell Line TumorDrug DiscoveryChlorocebus aethiopsAnimalsHumansPhysical and Theoretical ChemistryVero CellsRNA Double-Strandedchemistry.chemical_classification010405 organic chemistryCytotoxinsBiomoleculeOrganic Chemistryzinc complexRNADNASmall moleculeFluorescenceCombinatorial chemistry0104 chemical sciencesZincchemistryChemistry (miscellaneous)visual_artDNA and RNA duplexesvisual_art.visual_art_mediumNucleic acidMolecular MedicineRNAaza-macrocycleDNAMolecules
researchProduct

Mixed-ligand copper(ii)–sulfonamide complexes: effect of the sulfonamide derivative on DNA binding, DNA cleavage, genotoxicity and anticancer activity

2013

Four ternary complexes, [Cu(L1)2(bipy)] (1) [HL1 = N-(6-chlorobenzo[d]thiazol-2-yl)-4-methylbenzenesulfonamide], [Cu(L2)2(bipy)] (2) [HL2 = N-(benzo[d]thiazol-2-yl)-4-methylbenzenesulfonamide], [Cu(L3)2(bipy)]·1/2H2O (3) [HL3 = N-(5,6-dimethylbenzo[d]thiazol-2-yl)-4-methylbenzenesulfonamide] and [Cu(L4)2(bipy)] (4) [HL4 = N-(5,6-dimethylbenzo[d]thiazol-2-yl)benzenesulfonamide], were prepared and then characterized by X-ray crystallography, spectroscopy and magnetic measurements. Whereas the molecular structure of 1 and 2 consists of a discrete monomeric copper(II) species with a distorted square planar geometry, that of 3 and 4 consists of two independent molecules. In 3, both molecules pre…

Cell SurvivalStereochemistryDNA damageAntineoplastic AgentsApoptosisSaccharomyces cerevisiaeLigandsInorganic ChemistryJurkat Cellschemistry.chemical_compoundCoordination ComplexesHumansMoleculeDNA CleavageCell ProliferationCoordination geometrychemistry.chemical_classificationSulfonamidesDNASquare pyramidal molecular geometryIn vitroSulfonamideCrystallographyMonomerchemistryCaco-2 CellsCopperDNADalton Transactions
researchProduct

Cell Culture Characterization of Prooxidative Chain-Transfer Agents as Novel Cytostatic Drugs

2021

Prooxidative therapy is a well-established concept in infectiology and parasitology, in which prooxidative drugs like artemisinin and metronidazole play a pivotal clinical role. Theoretical considerations and earlier studies have indicated that prooxidative therapy might also represent a promising strategy in oncology. Here, we have investigated a novel class of prooxidative drugs, namely chain-transfer agents, as cytostatic agents in a series of human tumor cell lines in vitro. We have found that different chain-transfer agents of the lipophilic thiol class (like dodecane-1-thiol) elicited half-maximal effective concentrations in the low micromolar range in SY5Y cells (human neuroblastoma)…

Cell Survivallipophilic thiolCellular differentiationPharmaceutical ScienceOrganic chemistryfree radical chain reactionAntineoplastic AgentschemotherapyAntioxidantsArticleAnalytical Chemistryradical propagationHeLaQD241-441Coordination ComplexesNeuroblastomaDrug DiscoverymedicineTumor Cells CulturedHumansDoxorubicinSulfhydryl CompoundsPhysical and Theoretical ChemistryCytotoxicityoxidative cell deathCell Proliferationprooxidative drugbiologyChemistryHEK 293 cellslipid peroxidationbiology.organism_classificationmedicine.diseaseCytostatic Agentschain-transfer agentIn vitroChemistry (miscellaneous)Cell cultureCancer researchMolecular MedicineNitrogen OxidesDrug Screening Assays Antitumormedicine.drugrate-limiting stepMolecules
researchProduct

TIMP-3 facilitates binding of target metalloproteinases to the endocytic receptor LRP-1 and promotes scavenging of MMP-1.

2020

AbstractMatrix metalloproteinases (MMPs) and the related families of disintegrin metalloproteinases (ADAMs) and ADAMs with thrombospondin repeats (ADAMTSs) play a crucial role in extracellular matrix (ECM) turnover and shedding of cell-surface molecules. The proteolytic activity of metalloproteinases is post-translationally regulated by their endogenous inhibitors, known as tissue inhibitors of metalloproteinases (TIMPs). Several MMPs, ADAMTSs and TIMPs have been reported to be endocytosed by the low-density lipoprotein receptor-related protein-1 (LRP-1). Different binding affinities of these proteins for the endocytic receptor correlate with different turnover rates which, together with di…

Cell biologyTIMP-3 LRP-1 MMP-1 extracellular matrix endocytosis metalloproteinases endocytic receptorlcsh:MedicinePlasma protein bindingMatrix metalloproteinaseBiochemistryArticleExtracellular matrixDisintegrinHumanslcsh:ScienceReceptorTissue Inhibitor of Metalloproteinase-3MetalloproteinaseThrombospondinMultidisciplinarybiologyChemistrylcsh:RLigand (biochemistry)EndocytosisMatrix MetalloproteinasesCell biologyKineticsMultiprotein Complexesbiology.proteinlcsh:Qlipids (amino acids peptides and proteins)Matrix Metalloproteinase 1Low Density Lipoprotein Receptor-Related Protein-1Protein BindingScientific reports
researchProduct

Design of enzyme-mediated controlled release systems based on silica mesoporous supports capped with ester-glycol groups

2012

[EN] An ethylene glycol-capped hybrid material for the controlled release of molecules in the presence of esterase enzyme has been prepared. The final organic-inorganic hybrid solid S1 was synthesized by a two-step procedure. In the first step, the pores of an inorganic MCM-41 support (in the form of nanoparticles) were loaded with [Ru(bipy) 3]Cl 2 complex, and then, in the second step, the pore outlets were functionalized with ester glycol moieties that acted as molecular caps. In the absence of an enzyme, release of the complex from aqueous suspensions of S1 at pH 8.0 is inhibited due to the steric hindrance imposed by the bulky ester glycol moieties. Upon addition of esterase enzyme, del…

Cell viabilityINGENIERIA DE LA CONSTRUCCIONEthyleneRuthenium complexesMCM-41 supportsCytotoxicityGlycol derivativesEsteraseFunctionalizedOrganic-inorganic hybrid solidsGlycolschemistry.chemical_compoundQUIMICA ORGANICATumor Cells CulturedElectrochemistryControlled release systemsOrganic chemistryControlled releaseGeneral Materials ScienceSteric hindrancesMCF-7 cellsSpectroscopyHydrolysisEsterasesSilicaEstersSurfaces and InterfacesSilicon DioxideCondensed Matter PhysicsControlled releaseChlorine compoundsEster bondsBody fluidsHybrid materialsHybrid materialPorosityCell deathCell SurvivalSurface PropertiesCytotoxic drugsRutheniumHydrolysisEnzymatic hydrolysisEsterase enzymesPolymer chemistryHumansCamptothecin (CPT)Molecular capSize reductionsTherapeutic ApplicationEthylene glycolTwo-step procedureEsterificationSuspensions (fluids)Ruthenium compoundsQUIMICA INORGANICAMesoporous supportOligo(ethylene glycol)Cell internalizationMolecular gatesConfocal microscopychemistryEnzymatic hydrolysisEnzyme-mediated hydrolysisNanoparticlesCamptothecinCell cultureMesoporous materialAqueous suspensionsEthylene glycolHeLa Cells
researchProduct

An essential switch in subunit composition of a chromatin remodeling complex during neural development.

2007

Summary Mammalian neural stem cells (NSCs) have the capacity to both self-renew and to generate all the neuronal and glial cell-types of the adult nervous system. Global chromatin changes accompany the transition from proliferating NSCs to committed neuronal lineages, but the mechanisms involved have been unclear. Using a proteomics approach, we show that a switch in subunit composition of neural, ATP-dependent SWI/SNF-like chromatin remodeling complexes accompanies this developmental transition. Proliferating neural stem and progenitor cells express complexes in which BAF45a, a Kruppel/PHD domain protein and the actin-related protein BAF53a are quantitatively associated with the SWI2/SNF2-…

Cellular differentiationProtein subunitNeuroscience(all)Molecular Sequence DataNeuroepithelial CellsDEVBIONerve Tissue ProteinsBiologyChromatin remodelingMOLNEUROEpigenesis Genetic03 medical and health sciencesMice0302 clinical medicineMultienzyme ComplexesAnimalsAmino Acid SequenceProgenitor cell030304 developmental biologyNeurons0303 health sciencesGeneral NeuroscienceMultipotent Stem CellsGene Expression Regulation DevelopmentalCell DifferentiationChromatin Assembly and DisassemblySTEMCELLNeural stem cellChromatinCell biologyNeuroepithelial cellProtein SubunitsNeural developmentNeuroglia030217 neurology & neurosurgeryTranscription FactorsNeuron
researchProduct

Retention of aroma compounds in starch matrices: competitions between aroma compounds toward amylose and amylopectin

2002

International audience; The retention of three aroma compounds-isoamyl acetate, ethyl hexanoate, and linalool--from starch-containing model food matrices was measured by headspace analysis, under equilibrium conditions. We studied systems containing standard or waxy corn starch with one or two aroma compounds. The three studied aroma compounds interact differently: ethyl hexanoate and linalool form complexes with amylose, and isoamyl acetate cannot. However, in systems containing one aroma compound, we observed with both starches a significant retention of the three molecules. These results indicate that amylopectin could play a role in the retention of aroma. In systems containing two arom…

Chemical PhenomenaStarchAcyclic MonoterpenesIsoamyl acetate01 natural sciencesBinding CompetitiveZea mayschemistry.chemical_compound0404 agricultural biotechnologyPentanolsamyloseAmylose[CHIM.ANAL]Chemical Sciences/Analytical chemistry[SDV.IDA]Life Sciences [q-bio]/Food engineeringAroma compoundOrganic chemistryamylopectinCaproatesAromaWaxy corncomplexesbiologyChemistry Physicalflavor retention010401 analytical chemistryEthyl hexanoatefood and beveragesStarch04 agricultural and veterinary sciencesGeneral Chemistryinteractionsbiology.organism_classification040401 food science0104 chemical scienceschemistryFoodAmylopectinOdorantsMonoterpenesStarch pasteGeneral Agricultural and Biological Sciencescompetition[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition
researchProduct

Photophysical Properties of Oligo(phenylene ethynylene) Iridium(III) Complexes Functionalized with Metal-Anchoring Groups

2016

[EN] The electrochemical and photophysical properties of a family of conjugated ligands and their iridium(III) cyclometallated complexes are described. They consist of a series of monocationic Ir-III bis-2-phenylpyridine complexes with p-phenylethynyl-1,10-phenanthroline ligands of different length. The structure of these ligands includes terminal acetylthiol or pyridine groups, which can provide good electrical contacts between metal electrodes. Cyclic voltammetry, absorption and emission spectroscopy, laser flash photolysis and density functional theory calculations reveal that the high conjugation of the diimine ligand affords small energy gaps between the frontier orbitals. Nevertheless…

ChemistryLigandLaser flash photolysischemistry.chemical_element02 engineering and technologyConjugated system010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesFluorescence0104 chemical sciencesMLCTLLCTInorganic ChemistryIr complexesQUIMICA ORGANICAExcited stateFlash photolysisDensity functional theoryIridium0210 nano-technologyHOMO/LUMODiimine
researchProduct

Impact of the synergistic collaboration of oligothiophene bridges and ruthenium complexes on the optical properties of dumbbell-shaped compounds.

2012

The linear and non-linear optical properties of a family of dumbbell-shaped dinuclear complexes, in which an oligothiophene chain with various numbers of rings (1, 3, and 6) acts as a bridge between two homoleptic tris(2,2'-bipyridine)ruthenium(II) complexes, have been fully investigated by using a range of spectroscopic techniques (absorption and luminescence, transient absorption, Raman, and non-linear absorption), together with density functional theory calculations. Our results shed light on the impact of the synergistic collaboration between the electronic structures of the two chemical moieties on the optical properties of these materials. Experiments on the linear optical properties …

ChemistryOrganic Chemistrychemistry.chemical_elementGeneral ChemistryThiophenesConjugated systemPhotochemistryLigandsSpectrum Analysis RamanCatalysisRutheniumRutheniumchemistry.chemical_compoundBipyridineCoordination ComplexesUltrafast laser spectroscopyThiopheneQuantum TheoryThermodynamicsHomolepticAbsorption (electromagnetic radiation)LuminescenceChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct