Search results for "complexe"
showing 10 items of 920 documents
Specific interactions of monotetrahydrofuranic annonaceous acetogenins as inhibitors of mitochondrial complex I.
2000
Annonaceous acetogenins (ACG) are a wide group of cytotoxic compounds isolated from plants of the Annonaceae family. Some of them are promising candidates to be a future new generation of antitumor drugs due to the ability to inhibit the NADH:ubiquinone oxidoreductase of the respiratory chain (mitochondrial complex I), main gate of the energy production in the cell. ACG are currently being tested on standard antitumor trials although little is known about the structure activity relationship at the molecular level. On recent studies, the relevance of several parts of the molecule for the inhibitory potency has been evaluated. Due to the great diversity of skeletons included in this family of…
Bimetallic ruthenium-tin chemistry: synthesis and molecular structure of arene ruthenium complexes containing trichlorostannyl ligands
2010
A series of neutral, anionic and cationic arene ruthenium complexes containing the trichlorostannyl ligand have been synthesised from SnCl2 and the corresponding arene ruthenium dichloride dimers [(η6-arene)Ru(μ2-Cl)Cl]2 (arene = C6H6, PriC6H4Me). While the reaction with triphenylphosphine and stannous chloride only gives the neutral mono(trichlorostannyl) complexes [(η6-C6H6)Ru(PPh3)(SnCl3)Cl] (1) and [(η6-PriC6H4Me)Ru(PPh3)(SnCl3)Cl] (2), the neutral di(trichlorostannyl) complex [(η6-PriC6H4Me)Ru(NCPh)(SnCl3)2] (3) could be obtained for the para-cymene derivative with benzonitrile as additional ligand. By contrast, the analogous reaction with the benzene derivative leads to a salt compose…
Fluoroquinolone–metal complexes: A route to counteract bacterial resistance?
2014
Abstract Microbial resistance to antibiotics is one of the biggest public health threats of the modern world. Antibiotic resistance is an area of much clinical relevance and therefore research that has the potential to identify agents that may circumvent it or treat resistant infections is paramount. Solution behavior of various fluoroquinolone (FQ) complexes with copper(II) in the presence and absence of 1,10-phenanthroline (phen) was studied in aqueous solution, by potentiometry and/or spectrophotometry, and are herein described. The results obtained showed that under physiological conditions (micromolar concentration range and pH 7.4) only copper(II):FQ:phen ternary complexes are stable.…
An Octanuclear Metallosupramolecular Cage Designed To Exhibit Spin-Crossover Behavior.
2018
By employing the subcomponent self-assembly approach utilizing 5,10,15,20-tetrakis(4-aminophenyl)porphyrin or its zinc(II) complex, 1H-4-imidazolecarbaldehyde, and either zinc(II) or iron(II) salts, we were able to prepare O-symmetric cages having a confined volume of ca. 1300 Å3 . The use of iron(II) salts yielded coordination cages in the high-spin state at room temperature, manifesting spin-crossover in solution at low temperatures, whereas corresponding zinc(II) salts led to the corresponding diamagnetic analogues. The new cages were characterized by synchrotron X-ray crystallography, high-resolution mass spectrometry, and NMR, Mössbauer, IR, and UV/Vis spectroscopy. The cage structures…
Synthesis of a labile sulfur-centred ligand, [S(H)C(PPh2S)2]−: structural diversity in lithium(i), zinc(ii) and nickel(ii) complexes
2016
A high-yield synthesis of [Li{S(H)C(PPh2S)2}]2 [Li2·(3)2] was developed and this reagent was used in metathesis with ZnCl2 and NiCl2 to produce homoleptic complexes 4 and 5b in 85 and 93% yields, respectively. The solid-state structure of the octahedral complex [Zn{S(H)C(PPh2S)2}2] (4) reveals notable inequivalence between the Zn-S(C) and Zn-S(P) contacts (2.274(1) Å vs. 2.842(1) and 2.884(1) Å, respectively). Two structural isomers of the homoleptic complex [Ni{S(H)C(PPh2S)2}2] were isolated after prolonged crystallization processes. The octahedral green Ni(ii) isomer 5a exhibits the two monoprotonated ligands bonded in a tridentate (S,S',S'') mode to the Ni(ii) centre with three distinctl…
Self-assembly of metallosupramolecular rhombi from chiral concave 9,9'-spirobifluorene-derived bis(pyridine) ligands.
2014
Two new 9,9’-spirobifluorene-based bis(4-pyridines) were synthesised in enantiopure and one also in racemic form. These ligands act as concave templates and form metallosupramolecular [(dppp)2M2L2] rhombi with cis-protected [(dppp)Pd]2+ and [(dppp)Pt]2+ ions. The self-assembly process of the racemic ligand preferably occurs in a narcissistic self-recognising manner. Hence, a mixture of all three possible stereoisomers [(dppp)2M2{(R)-L}2](OTf)4, [(dppp)2M2{(S)-L}2](OTf)4, and [(dppp)2M2{(R)-L}{(S)-L}](OTf)4 was obtained in an approximate 1.5:1.5:1 ratio which corresponds to an amplification of the homochiral assemblies by a factor of approximately three as evidenced by NMR spectroscopy and m…
Iron(III) bis(pyrazol-1-yl)acetate based decanuclear metallacycles: synthesis, structure, magnetic properties and DFT calculations
2016
The synthesis, structural aspects, magnetic interpretation and theoretical rationalizations for a new member of the ferric wheel family, a decanuclear iron(III) complex with the formula [Fe10(bdtbpza)10(μ2-OCH3)20] (1), featuring the N,N,O tridentate bis(3,5-di-tert-butylpyrazol-1-yl)acetate ligand, are reported. The influence of the steric effect on both the core geometry and coordination mode is observed. Temperature dependent (2.0–300 K range) magnetic susceptibility studies carried out on complexes 1 established unequivocally antiferromagnetic (AF) interactions between high-spin iron(III) centers (S = 5/2), leading to a ground state S = 0. The mechanism of AF intramolecular coupling was…
Insertion Reactions of Neutral Phosphidozirconocene Complexes as a Convenient Entry into Frustrated Lewis Pair Territory
2016
International audience; Neutral phosphidozirconocene complexes [Cp2Zr(PR2)Me] (Cp=cyclopentadienyl; 1a: R=cyclohexyl (Cy); 1b: R=mesityl (Mes); 1c: R=tBu) undergo insertion into the Zr-P bond by non-enolisable carbonyl building blocks (O=CRR), such as benzophenone, aldehydes, paraformaldehyde or CO2, to give [Cp2Zr(OCRRPR2)Me] (3-7). Depending on the steric bulk around P, complexes 3-7 react with B(C6F5)(3) to give O-bridged cationic zirconocene dimers that display typical frustrated Lewis pair (FLP)/ambiphilic ligand behaviour. Thus, the reaction of {[Cp2Zr(-OCHPhPCy2)][MeB(C6F5)(3)]}(2) (10a) with chalcone results in 1,4 addition of the Zr+/P FLP, whereas the reaction of {[Cp2Zr(-OCHFcPCy…
Synthesis, structural characterisation and biological studies of new mononuclear platinum(II) complexes with sterically hindered heterocyclic ligands
2011
Abstract Three novel cisplatin analogues were synthesized, designed according to an approach which violates the “classical” structure–activity relationship, by replacing the diamine ligands with a planar N donor heterocycle giving a sterically hindered complex. Moreover, the sterical hindrance of antitumor drug candidates potentially makes them less susceptible to deactivation by sulphur-containing proteins and helping to overcome resistance mechanisms. The resulting mononuclear complexes of sterically hindered polidentate heterocyclic N ligands [PtCl(bbp)]Cl ( 1 ) [bbp = 2,6-bis(2-benzimidazolyl)pyridine], [PtCl 2 (dptdn)](H 2 O) ( 2 ) [dptdn = sodium 5,6-diphenyl-3-(2′-pyridyl)-1,2,4-tria…
Remarkable Steric Effects and Influence of Monodentate Axial Ligands L on the Spin-Crossover Properties of trans-[FeII(N4 ligand)L] Complexes
2007
Iron(II) complexes obtained from tetradentate, rigid, linear N4 ligands have been investigated to appraise the influence of steric effects and the impact of trans-coordinated anions on the spin-transition behavior. As expected, the well-designed ligands embrace the metal center, resulting in octahedral iron(II) complexes where the basal plane is fully occupied by the pyridine/pyrazole N4 ligand, while anions or solvent molecules are exclusively axially coordinated. Precursor complexes, namely, [Fe(bpzbpy)(MeOH)2](BF4)2 (where bpzbpy symbolizes the ligand 6,6'-bis(N-pyrazolylmethyl)-2,2'-bipyridine) and [Fe(mbpzbpy)(MeOH)2](BF4)2 (where mbpzbpy symbolizes the ligand 6,6'-bis(3,5-dimethyl-N-p…