Search results for "computational chemistry"

showing 10 items of 1209 documents

Hydrogen Bond Fluctuations Control Photochromism in a Reversibly Photo-Switchable Fluorescent Protein

2015

Reversibly switchable fluorescent proteins (RSFPs) are essential for high-resolution microscopy of biological samples, but the reason why these proteins are photochromic is still poorly understood. To address this problem, we performed molecular dynamics simulations of the fast switching Met159Thr mutant of the RSFP Dronpa. Our simulations revealed a ground state structural heterogeneity in the chromophore pocket that consists of three populations with one, two, or three hydrogen bonds to the phenolate moiety of the chromophore. By means of non-adiabatic quantum mechanics/molecular dynamics simulations, we demonstrated that the subpopulation with a single hydrogen bond is responsible for of…

0301 basic medicinefluorescent proteinsMolecular Dynamics Simulation010402 general chemistryPhotochemistry01 natural sciencesCatalysis03 medical and health sciencesDronpaMolecular dynamicsPhotochromismIsomerismta116structural heterogeneityHydrogen bondChemistryRational designHydrogen BondingGeneral MedicineGeneral ChemistryChromophorePhotochemical Processeslaskennallinen kemiaphotochromismcomputational chemistryFluorescence0104 chemical sciencesLuminescent Proteins030104 developmental biologyQuantum Theoryphoto-isomerizationIsomerizationAngewandte Chemie International Edition
researchProduct

Force Field for Water over Pt(111): Development, Assessment, and Comparison

2018

Metal/water interfaces are key in many natural and industrial processes, such as corrosion, atmospheric, or environmental chemistry. Even today, the only practical approach to simulate large interfaces between a metal and water is to perform force-field simulations. In this work, we propose a novel force field, GAL17, to describe the interaction of water and a Pt(111) surface. GAL17 builds on three terms: (i) a standard Lennard-Jones potential for the bonding interaction between the surface and water, (ii) a Gaussian term to improve the surface corrugation, and (iii) two terms describing the angular dependence of the interaction energy. The 12 parameters of this force field are fitted again…

10120 Department of ChemistryMaterials scienceComputationGaussianThermodynamics02 engineering and technology010402 general chemistry01 natural sciencesForce field (chemistry)CorrosionMetalComputer Softwaresymbols.namesakeAdsorptionTheoretical and Computational Chemistry540 Chemistry1706 Computer Science ApplicationsPhysical and Theoretical ChemistryComputingMilieux_MISCELLANEOUSChemical PhysicsSolvationInteraction energy021001 nanoscience & nanotechnology0104 chemical sciencesComputer Science Applications[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry13. Climate actionvisual_artvisual_art.visual_art_mediumsymbolsBiochemistry and Cell Biology0210 nano-technology1606 Physical and Theoretical Chemistry
researchProduct

Influence of the exchange and correlation functional on the structure of amorphous InSb and In3SbTe2 compounds

2016

We have investigated the structural, vibrational, and electronic properties of the amorphous phase of InSb and In3SbTe2 compounds of interest for applications in phase change non-volatile memories. Models of the amorphous phase have been generated by quenching from the melt by molecular dynamics simulations based on density functional theory. In particular, we have studied the dependence of the structural properties on the choice of the exchange-correlation functional. It turns out that the use of the Becke-Lee-Yang-Parr functional provides models with a much larger fraction of In atoms in a tetrahedral bonding geometry with respect to previous results obtained with the most commonly used P…

10120 Department of Chemistrynon-volatile memoryYield (engineering)Theory of Condensed MatterGeneral Physics and Astronomy02 engineering and technologyElectronic structure01 natural sciencesMolecular dynamicsComputational chemistry540 Chemistry0103 physical sciencesPhysical and Theoretical Chemistry010306 general physicsamorphous materialFIS/03 - FISICA DELLA MATERIAQuenchingChemistry021001 nanoscience & nanotechnologyelectronic structure3100 General Physics and AstronomyAmorphous solidab-initio simulationChemical physicsMolecular vibrationTetrahedronDensity functional theory1606 Physical and Theoretical Chemistry0210 nano-technologyphase change material
researchProduct

Large numbers of cold positronium atoms created in laser-selected Rydberg states using resonant charge exchange

2016

Lasers are used to control the production of highly excited positronium atoms (Ps*). The laser light excites Cs atoms to Rydberg states that have a large cross section for resonant charge-exchange collisions with cold trapped positrons. For each trial with 30 million trapped positrons, more than 700 000 of the created Ps* have trajectories near the axis of the apparatus, and are detected using Stark ionization. This number of Ps* is 500 times higher than realized in an earlier proof-of-principle demonstration (2004 Phys. Lett. B 597 257). A second charge exchange of these near-axis Ps* with trapped antiprotons could be used to produce cold antihydrogen, and this antihydrogen production is e…

ANTIHYDROGENGeneral PhysicsAntiparticlepositronium0205 Optical Physics0307 Theoretical And Computational ChemistryPLASMASCONFINEMENTPhysics Atomic Molecular & Chemical01 natural sciences010305 fluids & plasmasPositroniumsymbols.namesake0202 Atomic Molecular Nuclear Particle And Plasma PhysicsIonization0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsAntihydrogenpositronsPhysicsCondensed Matter::Quantum GasesScience & TechnologyPhysicsOpticsRydberg statesCondensed Matter PhysicsAtomic and Molecular Physics and Opticscharge-exchangeExcited stateAntimatterPhysical SciencesRydberg formulasymbolsAtomic physicsLepton
researchProduct

Theoretical study of photoinduced ring-isomerization in the 1,2,4-oxadiazole series

2004

Abstract A theoretical study of photoinduced ring-isomerization of 3-amino-5-methyl- and 3-amino-5-phenyl-1,2,4-oxadiazoles is reported. The results well agree with the reported experimental data: in particular, they explain the ring-photoisomerization into the corresponding 2-amino-1,3,4-oxadiazoles through a ring contraction-ring expansion route; moreover, the occurrence of competing pathways involving both the ring contraction and the internal cyclization–isomerization mechanism during irradiation of the 5-alkyl substituted substrates in the presence of a base has been also substantiated.

Ab initio calculationPhotoisomerizationPhotochemistryChemistryHeterocycleOrganic ChemistryOxadiazoleSettore CHIM/06 - Chimica OrganicaPhotochemistryBiochemistrychemistry.chemical_compoundComputational chemistryAb initio quantum chemistry methodsPhotoisomerizationDrug Discovery124-OxadiazoleIsomerizationTetrahedron
researchProduct

Reply to Comment on “Mixed Grotthuss and Vehicle Transport Mechanism in Proton Conducting Polymers from Ab initio Molecular Dynamics Simulations”

2011

Ab initio molecular dynamicsConductive polymerProtonComputational chemistryChemistryGeneral Chemical EngineeringMaterials ChemistryGeneral ChemistryMechanism (sociology)Chemistry of Materials
researchProduct

Revisiting the Nonadiabatic Process in 1,2-Dioxetane.

2015

Determining the ground and excited-state decomposition mechanisms of 1,2-dioxetane is essential to understand the chemiluminescence and bioluminescence phenomena. Several experimental and theoretical studies has been performed in the past without reaching a converged description. The reason is in part associated with the complex nonadiabatic process taking place along the reaction. The present study is an extension of a previous work (De Vico, L.; Liu, Y.-J.; Krogh, J. W.; Lindh, R. J. Phys. Chem. A 2007, 111, 8013-8019) in which a two-step mechanism was established for the chemiluminescence involving asynchronous O-O' and C-C' bond dissociations. New high-level multistate multi configurati…

Ab initio molecular dynamicschemistry.chemical_compound12-DioxetanechemistryComputational chemistryQuantum mechanicsTheoretical chemistrySinglet statePhysical and Theoretical ChemistryHigh ratioComputer Science ApplicationsJournal of chemical theory and computation
researchProduct

Modeling of defects and surfaces in perovskite ferroelectrics

2002

The results of electronic structure calculations for different terminations of SrTiO3 (100) and (110) perovskite thin films are discussed. These calculations are based on the ab initio Hartree-Fock (HF) method and Density Functional Theory (DFT). Results are compared with previous ab initio plane-wave LDA and classical Shell Model (SM) calculations. Calculated considerable increase of the Ti – O chemical bond covalency nearby the surface is confirmed by experimental data. Our quantum chemical calculations performed by means of the intermediate neglect of differential overlap (INDO) method confirm the existence of self-trapped electrons in KNbO3, KTaO3 and BaTiO3 crystals. The relevant latti…

Ab initioElectronic structureElectronCondensed Matter PhysicsMolecular physicsInorganic ChemistryCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistryChemical bondComputer Science::Systems and ControlComputational chemistryMaterials ChemistryStrontium titanateDensity functional theoryLuminescencePerovskite (structure)Journal of Crystal Growth
researchProduct

Theoretical study of the NH tautomerism in free base porphyrin

1997

Abstract The NH tautomerism of free base porphyrin is investigated at the semiempirical spin-unrestricted AM1 (UAM1) and ab initio RHF/3-21G levels. The UAM1 method provides delocalized geometries for all stationary structures without imposing any symmetry constraint. RHF/3-21G geometry optimizations have to be performed under symmetry restrictions to ensure that realistic delocalized structures are obtained. Both the semiempirical and the ab initio calculations predict that the interconversion between trans tautomers proceeds in an asynchronous two-step process via intermediate cis tautomers. The cis tautomers are characterized as minima in the potential energy surface and are 8–10 kcal m…

Ab initioFree baseActivation energyCondensed Matter PhysicsBiochemistryPorphyrinTautomerchemistry.chemical_compoundDelocalized electronchemistryComputational chemistryAb initio quantum chemistry methodsPotential energy surfacePhysical and Theoretical ChemistryJournal of Molecular Structure: THEOCHEM
researchProduct

The Coordination of Uranyl in Water: A Combined Quantum Chemical and Molecular Simulation Study

2005

The coordination environment of uranyl in water has been studied using a combined quantum mechanical and molecular dynamics approach. Multiconfigurational wave function calculations have been performed to generate pair potentials between uranyl and water. The quantum chemically determined energies have been used to fit parameters in a polarizable force field with an added charge transfer term. Molecular dynamics simulations have been performed for the uranyl ion and up to 400 water molecules. The results show a uranyl ion with five water molecules coordinated in the equatorial plane. The U-O(H(2)O) distance is 2.40 A, which is close to the experimental estimates. A second coordination shell…

Ab initioMolecular simulationBiochemistryCatalysisIonMolecular dynamicschemistry.chemical_compoundColloid and Surface ChemistryAb initio quantum chemistry methodsComputational chemistryComputer SimulationPhysics::Chemical PhysicsQuantum chemicalHydrogen bondSolvationWaterGeneral ChemistryGeneral MedicineUranylSolvation shellchemistryModels ChemicalChemical physicsddc:540Quantum TheoryUranium
researchProduct