Search results for "computational complexity"

showing 10 items of 249 documents

Unary languages recognized by two-way one-counter automata

2013

A two-way deterministic finite state automaton with one counter (2D1CA) is a fundamental computational model that has been examined in many different aspects since sixties, but we know little about its power in the case of unary languages. Up to our knowledge, the only known unary nonregular languages recognized by 2D1CAs are those formed by strings having exponential length, where the exponents form some trivial unary regular language. In this paper, we present some non-trivial subsets of these languages. By using the input head as a second counter, we present simulations of two-way deterministic finite automata with linearly bounded counters and linear--space Turing machines. We also show…

FOS: Computer and information sciencesComputer Science - Computational ComplexityTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESFormal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata TheoryComputational Complexity (cs.CC)Computer Science::Formal Languages and Automata Theory
researchProduct

Tight bounds for the space complexity of nonregular language recognition by real-time machines

2011

We examine the minimum amount of memory for real-time, as opposed to one-way, computation accepting nonregular languages. We consider deterministic, nondeterministic and alternating machines working within strong, middle and weak space, and processing general or unary inputs. In most cases, we are able to show that the lower bounds for one-way machines remain tight in the real-time case. Memory lower bounds for nonregular acceptance on other devices are also addressed. It is shown that increasing the number of stacks of real-time pushdown automata can result in exponential improvement in the total amount of space usage for nonregular language recognition.

FOS: Computer and information sciencesComputer Science - Computational ComplexityTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESFormal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata TheoryComputational Complexity (cs.CC)Computer Science::Formal Languages and Automata Theory
researchProduct

Finite Satisfiability of the Two-Variable Guarded Fragment with Transitive Guards and Related Variants

2018

We consider extensions of the two-variable guarded fragment, GF2, where distinguished binary predicates that occur only in guards are required to be interpreted in a special way (as transitive relations, equivalence relations, pre-orders or partial orders). We prove that the only fragment that retains the finite (exponential) model property is GF2 with equivalence guards without equality. For remaining fragments we show that the size of a minimal finite model is at most doubly exponential. To obtain the result we invent a strategy of building finite models that are formed from a number of multidimensional grids placed over a cylindrical surface. The construction yields a 2NExpTime-upper bou…

FOS: Computer and information sciencesComputer Science - Logic in Computer ScienceTwo-variable logicGeneral Computer ScienceComputational complexity theoryLogicguarded fragmentBinary number0102 computer and information sciences01 natural sciencesUpper and lower boundsTheoretical Computer ScienceCombinatoricstransitive relationEquivalence relationfinite satisfiability problem0101 mathematicsEquivalence (formal languages)Integer programmingMathematicsDiscrete mathematicsTransitive relationNEXPTIMEcomputational complexity010102 general mathematicsLogic in Computer Science (cs.LO)Computational Mathematics010201 computation theory & mathematicsequivalence ralationACM Transactions on Computational Logic
researchProduct

Visibly pushdown modular games,

2014

Games on recursive game graphs can be used to reason about the control flow of sequential programs with recursion. In games over recursive game graphs, the most natural notion of strategy is the modular strategy, i.e., a strategy that is local to a module and is oblivious to previous module invocations, and thus does not depend on the context of invocation. In this work, we study for the first time modular strategies with respect to winning conditions that can be expressed by a pushdown automaton. We show that such games are undecidable in general, and become decidable for visibly pushdown automata specifications. Our solution relies on a reduction to modular games with finite-state automat…

FOS: Computer and information sciencesComputer Science::Computer Science and Game TheoryComputer Science - Logic in Computer ScienceTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESTheoretical computer scienceFormal Languages and Automata Theory (cs.FL)Computer scienceComputer Science - Formal Languages and Automata Theory0102 computer and information sciences02 engineering and technologyComputational Complexity (cs.CC)Pushdown01 natural scienceslcsh:QA75.5-76.95Theoretical Computer ScienceComputer Science - Computer Science and Game TheoryComputer Science::Logic in Computer Science0202 electrical engineering electronic engineering information engineeringTemporal logicRecursionbusiness.industrylcsh:MathematicsGames; Modular; Pushdown; Theoretical Computer Science; Information Systems; Computer Science Applications; Computational Theory and MathematicsPushdown automatonModular designDecision problemlcsh:QA1-939Logic in Computer Science (cs.LO)Computer Science ApplicationsUndecidable problemDecidabilityNondeterministic algorithmComputer Science - Computational ComplexityModularTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESComputational Theory and Mathematics010201 computation theory & mathematics020201 artificial intelligence & image processinglcsh:Electronic computers. Computer scienceGamesbusinessComputer Science::Formal Languages and Automata TheoryComputer Science and Game Theory (cs.GT)Information SystemsInformation and Computation
researchProduct

On the Complexity of Solving Subtraction Games

2018

We study algorithms for solving Subtraction games, which sometimes are referred to as one-heap Nim games. We describe a quantum algorithm which is applicable to any game on DAG, and show that its query compexity for solving an arbitrary Subtraction game of $n$ stones is $O(n^{3/2}\log n)$. The best known deterministic algorithms for solving such games are based on the dynamic programming approach. We show that this approach is asymptotically optimal and that classical query complexity for solving a Subtraction game is generally $\Theta(n^2)$. This paper perhaps is the first explicit "quantum" contribution to algorithmic game theory.

FOS: Computer and information sciencesComputer Science::Computer Science and Game TheoryQuantum PhysicsComputer Science - Computational ComplexityComputer Science - Computer Science and Game TheoryComputer Science - Data Structures and AlgorithmsComputingMilieux_PERSONALCOMPUTINGFOS: Physical sciencesData Structures and Algorithms (cs.DS)Computational Complexity (cs.CC)Quantum Physics (quant-ph)Computer Science and Game Theory (cs.GT)
researchProduct

Some complexity and approximation results for coupled-tasks scheduling problem according to topology

2016

International audience; We consider the makespan minimization coupled-tasks problem in presence of compatibility constraints with a specified topology. In particular, we focus on stretched coupled-tasks, i.e. coupled-tasks having the same sub-tasks execution time and idle time duration. We study several problems in framework of classic complexity and approximation for which the compatibility graph is bipartite (star, chain,. . .). In such a context, we design some efficient polynomial-time approximation algorithms for an intractable scheduling problem according to some parameters.

FOS: Computer and information sciencesCoupled-task scheduling model[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC]Computer science0211 other engineering and technologies0102 computer and information sciences02 engineering and technologyManagement Science and Operations ResearchComputational Complexity (cs.CC)Topology01 natural sciencesExecution timeTheoretical Computer ScienceComputer Science - Data Structures and AlgorithmsData Structures and Algorithms (cs.DS)021103 operations researchJob shop schedulingPolynomial-time approximation algorithmApproximation algorithmCompatibility graphComplexityIdle timeComputer Science ApplicationsComputer Science - Computational Complexity[ INFO.INFO-CC ] Computer Science [cs]/Computational Complexity [cs.CC]010201 computation theory & mathematicsCompatibility (mechanics)Bipartite graphMinification
researchProduct

Finite state verifiers with constant randomness

2014

We give a new characterization of $\mathsf{NL}$ as the class of languages whose members have certificates that can be verified with small error in polynomial time by finite state machines that use a constant number of random bits, as opposed to its conventional description in terms of deterministic logarithmic-space verifiers. It turns out that allowing two-way interaction with the prover does not change the class of verifiable languages, and that no polynomially bounded amount of randomness is useful for constant-memory computers when used as language recognizers, or public-coin verifiers. A corollary of our main result is that the class of outcome problems corresponding to O(log n)-space …

FOS: Computer and information sciencesDiscrete mathematicsClass (set theory)Computer Science - Logic in Computer ScienceFinite-state machineGeneral Computer ScienceComputational Complexity (cs.CC)Binary logarithmLogic in Computer Science (cs.LO)Theoretical Computer ScienceComputer Science - Computational ComplexityBounded functionVerifiable secret sharingConstant (mathematics)Time complexityRandomnessMathematics
researchProduct

Optimal one-shot quantum algorithm for EQUALITY and AND

2017

We study the computation complexity of Boolean functions in the quantum black box model. In this model our task is to compute a function $f:\{0,1\}\to\{0,1\}$ on an input $x\in\{0,1\}^n$ that can be accessed by querying the black box. Quantum algorithms are inherently probabilistic; we are interested in the lowest possible probability that the algorithm outputs incorrect answer (the error probability) for a fixed number of queries. We show that the lowest possible error probability for $AND_n$ and $EQUALITY_{n+1}$ is $1/2-n/(n^2+1)$.

FOS: Computer and information sciencesDiscrete mathematicsOne shotQuantum PhysicsGeneral Computer ScienceProbabilistic logicFOS: Physical sciencesFunction (mathematics)Computational Complexity (cs.CC)Computer Science - Computational ComplexityProbability of errorComputation complexityQuantum algorithmQuantum Physics (quant-ph)Boolean functionQuantumMathematics
researchProduct

The quantum query complexity of certification

2009

We study the quantum query complexity of finding a certificate for a d-regular, k-level balanced NAND formula. Up to logarithmic factors, we show that the query complexity is Theta(d^{(k+1)/2}) for 0-certificates, and Theta(d^{k/2}) for 1-certificates. In particular, this shows that the zero-error quantum query complexity of evaluating such formulas is O(d^{(k+1)/2}) (again neglecting a logarithmic factor). Our lower bound relies on the fact that the quantum adversary method obeys a direct sum theorem.

FOS: Computer and information sciencesDiscrete mathematicsQuantum Physics0209 industrial biotechnologyNuclear and High Energy PhysicsQuantum queryComputer scienceDirect sumFOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear Physics0102 computer and information sciences02 engineering and technologyCertificationComputational Complexity (cs.CC)Certificate01 natural sciencesTheoretical Computer ScienceComputer Science - Computational Complexity020901 industrial engineering & automationComputational Theory and Mathematics010201 computation theory & mathematicsQuantum Physics (quant-ph)QuantumMathematical PhysicsQuantum Information and Computation
researchProduct

On the Power of Non-adaptive Learning Graphs

2012

We introduce a notion of the quantum query complexity of a certificate structure. This is a formalisation of a well-known observation that many quantum query algorithms only require the knowledge of the disposition of possible certificates in the input string, not the precise values therein. Next, we derive a dual formulation of the complexity of a non-adaptive learning graph, and use it to show that non-adaptive learning graphs are tight for all certificate structures. By this, we mean that there exists a function possessing the certificate structure and such that a learning graph gives an optimal quantum query algorithm for it. For a special case of certificate structures generated by cer…

FOS: Computer and information sciencesDiscrete mathematicsQuantum PhysicsTheoretical computer scienceComputational complexity theoryComputer scienceGeneral MathematicsExistential quantificationFOS: Physical sciencesGraph theoryString searching algorithmComputational Complexity (cs.CC)Query optimizationCertificateUpper and lower boundsTheoretical Computer ScienceComputational MathematicsComputer Science - Computational ComplexityComputational Theory and MathematicsBounded functionAdaptive learningSpecial caseQuantum Physics (quant-ph)Quantum computerMathematics2013 IEEE Conference on Computational Complexity
researchProduct