Search results for "computational complexity"
showing 10 items of 249 documents
Weak and strong recognition by 2-way randomized automata
1997
Languages weakly recognized by a Monte Carlo 2-way finite automaton with n states are proved to be strongly recognized by a Monte Carlo 2-way finite automaton with no(n) states. This improves dramatically over the previously known result by M.Karpinski and R.Verbeek [10] which is also nontrivial since these languages can be nonregular [5]. For tally languages the increase in the number of states is proved to be only polynomial, and these languages are regular.
Quantum Lower Bound for Graph Collision Implies Lower Bound for Triangle Detection
2015
We show that an improvement to the best known quantum lower bound for GRAPH-COLLISION problem implies an improvement to the best known lower bound for TRIANGLE problem in the quantum query complexity model. In GRAPH-COLLISION we are given free access to a graph $(V,E)$ and access to a function $f:V\rightarrow \{0,1\}$ as a black box. We are asked to determine if there exist $(u,v) \in E$, such that $f(u)=f(v)=1$. In TRIANGLE we have a black box access to an adjacency matrix of a graph and we have to determine if the graph contains a triangle. For both of these problems the known lower bounds are trivial ($\Omega(\sqrt{n})$ and $\Omega(n)$, respectively) and there is no known matching upper …
Quantum counter automata
2011
The question of whether quantum real-time one-counter automata (rtQ1CAs) can outperform their probabilistic counterparts has been open for more than a decade. We provide an affirmative answer to this question, by demonstrating a non-context-free language that can be recognized with perfect soundness by a rtQ1CA. This is the first demonstration of the superiority of a quantum model to the corresponding classical one in the real-time case with an error bound less than 1. We also introduce a generalization of the rtQ1CA, the quantum one-way one-counter automaton (1Q1CA), and show that they too are superior to the corresponding family of probabilistic machines. For this purpose, we provide gene…
Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine?
2020
Minimal Learning Machine (MLM) is a recently popularized supervised learning method, which is composed of distance-regression and multilateration steps. The computational complexity of MLM is dominated by the solution of an ordinary least-squares problem. Several different solvers can be applied to the resulting linear problem. In this paper, a thorough comparison of possible and recently proposed, especially randomized, algorithms is carried out for this problem with a representative set of regression datasets. In addition, we compare MLM with shallow and deep feedforward neural network models and study the effects of the number of observations and the number of features with a special dat…
If P≠NP then some strongly noninvertible functions are invertible
2006
AbstractRabi, Rivest, and Sherman alter the standard notion of noninvertibility to a new notion they call strong noninvertibility, and show—via explicit cryptographic protocols for secret-key agreement (Rabi and Sherman attribute this protocol to Rivest and Sherman) and digital signatures (Rabi and Sherman)—that strongly noninvertible functions are very useful components in protocol design. Their definition of strong noninvertibility has a small twist (“respecting the argument given”) that is needed to ensure cryptographic usefulness. In this paper, we show that this small twist has a consequence: unless P=NP, some strongly noninvertible functions are invertible.
New separation between $s(f)$ and $bs(f)$
2011
In this note we give a new separation between sensitivity and block sensitivity of Boolean functions: $bs(f)=(2/3)s(f)^2-(1/3)s(f)$.
Very Narrow Quantum OBDDs and Width Hierarchies for Classical OBDDs
2014
In the paper we investigate a model for computing of Boolean functions – Ordered Binary Decision Diagrams (OBDDs), which is a restricted version of Branching Programs. We present several results on the comparative complexity for several variants of OBDD models. We present some results on the comparative complexity of classical and quantum OBDDs. We consider a partial function depending on a parameter k such that for any k > 0 this function is computed by an exact quantum OBDD of width 2, but any classical OBDD (deterministic or stable bounded-error probabilistic) needs width 2 k + 1. We consider quantum and classical nondeterminism. We show that quantum nondeterminism can be more efficient …
Reduced complexity models in the identification of dynamical networks: Links with sparsification problems
2009
In many applicative scenarios it is important to derive information about the topology and the internal connections of more dynamical systems interacting together. Examples can be found in fields as diverse as Economics, Neuroscience and Biochemistry. The paper deals with the problem of deriving a descriptive model of a network, collecting the node outputs as time series with no use of a priori insight on the topology. We cast the problem as the optimization of a cost function operating a trade-off between accuracy and complexity in the final model. We address the problem of reducing the complexity by fixing a certain degree of sparsity, and trying to find the solution that “better” satisfi…
Alternating, private alternating, and quantum alternating realtime automata
2014
We present new results on realtime alternating, private alternating, and quantum alternating automaton models. Firstly, we show that the emptiness problem for alternating one-counter automata on unary alphabets is undecidable. Then, we present two equivalent definitions of realtime private alternating finite automata (PAFAs). We show that the emptiness problem is undecidable for PAFAs. Furthermore, PAFAs can recognize some nonregular unary languages, including the unary squares language, which seems to be difficult even for some classical counter automata with two-way input. Regarding quantum finite automata (QFAs), we show that the emptiness problem is undecidable both for universal QFAs o…
Quantum lower bound for inverting a permutation with advice
2014
Given a random permutation $f: [N] \to [N]$ as a black box and $y \in [N]$, we want to output $x = f^{-1}(y)$. Supplementary to our input, we are given classical advice in the form of a pre-computed data structure; this advice can depend on the permutation but \emph{not} on the input $y$. Classically, there is a data structure of size $\tilde{O}(S)$ and an algorithm that with the help of the data structure, given $f(x)$, can invert $f$ in time $\tilde{O}(T)$, for every choice of parameters $S$, $T$, such that $S\cdot T \ge N$. We prove a quantum lower bound of $T^2\cdot S \ge \tilde{\Omega}(\epsilon N)$ for quantum algorithms that invert a random permutation $f$ on an $\epsilon$ fraction of…